Thursday, 1 July 2010

Understanding Symbolic Logic, Virginia Klenk, 5th edition, Pearson Prentice Hall, 2008, Unit 18, 1(q), p. 354

Construct a proof for the following argument. Strategy: setting up a conditional proof practically solves the problem.
  1. ¬ (∃x)(Fx • Gx)
  2. (x)[(Fx • ¬ Gx) ⊃¬ (∃y)(Tyx • Hxy)]
  3. (x)[(y)(Hxy ⊃Zxy) ⊃Gx]
  4. ∴(x)[Fx ⊃(∃y) ¬ (Tyx ∨Zxy)]
  5. * Fx / ACP
  6. * (x)(Fx ⊃¬ Gx) / 1QC
  7. * Fx ⊃¬ Gx / 6UI x/x
  8. * ¬ Gx / 5,7MP
  9. * Fx • ¬ Gx / 5,8Conj.
  10. * (Fx • ¬ Gx) ⊃¬ (∃y)(Tyx • Hxy) / 2UI x/x
  11. * ¬ (∃y)(Tyx • Hxy) / 9,10MP
  12. * (y)(Tyx ⊃¬ Hxy) / 11QC
  13. * (y)(Hxy ⊃Zxy) ⊃Gx / 3UI x/x
  14. * ¬ (y)(Hxy ⊃Zxy) / 8,13MT
  15. * (∃y)(Hxy • ¬ Zxy) / 14QC
  16. * Hxm • ¬ Zxm / 15EI y/m
  17. * Hxm / 16 Simp.
  18. * Tmx ⊃¬ Hxm / 12UI y/m
  19. * ¬ Tmx / 17,18MT
  20. * ¬ Zxm / 16Simp.
  21. * ¬ Tmx • ¬ Zxm / 19,20Conj.
  22. * ¬ (Tmx ∨ Zxm) / 21DeM
  23. * (∃y) ¬ (Tyx ∨ Zxy) / 22EG
  24. Fx ⊃ (∃y) ¬ (Tyx ∨ Zxy) / 5-23CP
  25. (x)[Fx ⊃ (∃y) ¬ (Tyx ∨ Zxy)] / 24UG

No comments:

Post a Comment