Construct a proof for the following argument. Strategy: setting up a conditional proof practically solves the problem.
- ¬ (∃x)(Fx • Gx)
- (x)[(Fx • ¬ Gx) ⊃¬ (∃y)(Tyx • Hxy)]
- (x)[(y)(Hxy ⊃Zxy) ⊃Gx]
- ∴(x)[Fx ⊃(∃y) ¬ (Tyx ∨Zxy)]
- * Fx / ACP
- * (x)(Fx ⊃¬ Gx) / 1QC
- * Fx ⊃¬ Gx / 6UI x/x
- * ¬ Gx / 5,7MP
- * Fx • ¬ Gx / 5,8Conj.
- * (Fx • ¬ Gx) ⊃¬ (∃y)(Tyx • Hxy) / 2UI x/x
- * ¬ (∃y)(Tyx • Hxy) / 9,10MP
- * (y)(Tyx ⊃¬ Hxy) / 11QC
- * (y)(Hxy ⊃Zxy) ⊃Gx / 3UI x/x
- * ¬ (y)(Hxy ⊃Zxy) / 8,13MT
- * (∃y)(Hxy • ¬ Zxy) / 14QC
- * Hxm • ¬ Zxm / 15EI y/m
- * Hxm / 16 Simp.
- * Tmx ⊃¬ Hxm / 12UI y/m
- * ¬ Tmx / 17,18MT
- * ¬ Zxm / 16Simp.
- * ¬ Tmx • ¬ Zxm / 19,20Conj.
- * ¬ (Tmx ∨ Zxm) / 21DeM
- * (∃y) ¬ (Tyx ∨ Zxy) / 22EG
- Fx ⊃ (∃y) ¬ (Tyx ∨ Zxy) / 5-23CP
- (x)[Fx ⊃ (∃y) ¬ (Tyx ∨ Zxy)] / 24UG
No comments:
Post a Comment