Thursday, 24 June 2010

The Logic Book, M. Bergmann, J. Moor, J. Nelson, McGraw Hill, 2004, Ex. 10.5E, 4(f), p. 563

Show that the following sentences are equivalent. Solution: if they are equivalent, then we can derive one from the other.
(x)[Ax • (∃y) ¬ Bxy] is equivalent to ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)]
  1. (x)[Ax • (∃y) ¬ Bxy]
  2. * ¬ ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / AIP
  3. * (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / 2DN
  4. * ¬ Aa ∨(y)(Bay • Bay) / 3EI x/a
  5. * Aa • (∃y) ¬ Bay / 1UI x/a
  6. * Aa / 5Simp.
  7. * (y)(Bay • Bay) / 4,6DS
  8. * (∃y) ¬ Bay / 5Simp.
  9. * ¬ Bam / 8EI y/m
  10. * Bam • Bam / 7UI y/m
  11. * Bam / 10Taut.
  12. * ¬ Bam • Bam / 9,11Conj.
  13. * ¬ ¬ ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / 2-12IP
  14. * ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / 13DN

We have shown that the second sentence is derivable from the first by indirect proof.

  1. ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)]
  2. (x)[Ax • ¬ (y)(Bxy • Bxy)] / 1QC
  3. Ax • ¬ (y)(Bxy • Bxy) / 2UI x/x
  4. Ax / 3Simp.
  5. ¬ (y)(Bxy • Bxy) / 3Simp.
  6. (∃y)(¬ Bxy ∨¬ Bxy) / 5DeM
  7. ¬ Bxm ∨¬ Bxm / 6EI y/m
  8. ¬ Bxm / 7Taut.
  9. (∃y)¬ Bxy / 8EG
  10. Ax • (∃y)¬ Bxy / 4,9Conj.
  11. (x)[Ax • (∃y)¬ Bxy ] / 10UG

The first sentence is also derivable from the second. So, the two sentences are equivalent.

No comments:

Post a Comment