Show that the following sentences are equivalent. Solution: if they are equivalent, then we can derive one from the other.
(x)[Ax • (∃y) ¬ Bxy] is equivalent to ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)]
- (x)[Ax • (∃y) ¬ Bxy]
- * ¬ ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / AIP
- * (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / 2DN
- * ¬ Aa ∨(y)(Bay • Bay) / 3EI x/a
- * Aa • (∃y) ¬ Bay / 1UI x/a
- * Aa / 5Simp.
- * (y)(Bay • Bay) / 4,6DS
- * (∃y) ¬ Bay / 5Simp.
- * ¬ Bam / 8EI y/m
- * Bam • Bam / 7UI y/m
- * Bam / 10Taut.
- * ¬ Bam • Bam / 9,11Conj.
- * ¬ ¬ ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / 2-12IP
- * ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)] / 13DN
We have shown that the second sentence is derivable from the first by indirect proof.
- ¬ (∃x)[¬ Ax ∨(y)(Bxy • Bxy)]
- (x)[Ax • ¬ (y)(Bxy • Bxy)] / 1QC
- Ax • ¬ (y)(Bxy • Bxy) / 2UI x/x
- Ax / 3Simp.
- ¬ (y)(Bxy • Bxy) / 3Simp.
- (∃y)(¬ Bxy ∨¬ Bxy) / 5DeM
- ¬ Bxm ∨¬ Bxm / 6EI y/m
- ¬ Bxm / 7Taut.
- (∃y)¬ Bxy / 8EG
- Ax • (∃y)¬ Bxy / 4,9Conj.
- (x)[Ax • (∃y)¬ Bxy ] / 10UG
The first sentence is also derivable from the second. So, the two sentences are equivalent.
No comments:
Post a Comment