Thursday, 29 July 2010

Symbolic Logic, Dale Jacquette, Wadsworth, 2001, Chpt. 8, Ex. III, problem 15

The task is to prove the tautology:├ (∃x)[(Fx • ¬ Gx) ∨¬ Gx] ⊃(∃y)[(Fy ∨¬ Gy) • ¬ Gy].
  1. ├ (∃x)[(Fx • ¬ Gx) ∨¬ Gx] ⊃(∃y)[(Fy ∨¬ Gy) • ¬ Gy]
  2. * (∃x)[(Fx • ¬ Gx) ∨¬ Gx] / ACP
  3. * * ¬ (∃y)[(Fy ∨¬ Gy) • ¬ Gy] / AIP
  4. * * (y)[(Fy ∨¬ Gy) ⊃Gy] / 3QC
  5. * * (Fa • ¬ Ga) ∨¬ Ga / 2EI x/a
  6. * * (Fa ∨¬ Ga) • (¬ Ga ∨¬ Ga) / 5DeM
  7. * * ¬ Ga / 6Simp.
  8. * * Fa ∨¬ Ga / 6Simp.
  9. * * (Fa ∨¬ Ga) ⊃Ga / 4UI y/a
  10. * * Ga / 8,9MP
  11. * * Ga • ¬ Ga / 10,7Conj.
  12. * ¬ ¬ (∃y)[(Fy ∨¬ Gy) • ¬ Gy] /IP
  13. * (∃y)[(Fy ∨¬ Gy) • ¬ Gy] / 12DN
  14. (∃x)[(Fx • ¬ Gx) ∨¬ Gx] ⊃(∃y)[(Fy ∨¬ Gy) • ¬ Gy]

No comments:

Post a Comment