The task is to prove the tautology:├ (∃x)[(Fx • ¬ Gx) ∨¬ Gx] ⊃(∃y)[(Fy ∨¬ Gy) • ¬ Gy].
- ├ (∃x)[(Fx • ¬ Gx) ∨¬ Gx] ⊃(∃y)[(Fy ∨¬ Gy) • ¬ Gy]
- * (∃x)[(Fx • ¬ Gx) ∨¬ Gx] / ACP
- * * ¬ (∃y)[(Fy ∨¬ Gy) • ¬ Gy] / AIP
- * * (y)[(Fy ∨¬ Gy) ⊃Gy] / 3QC
- * * (Fa • ¬ Ga) ∨¬ Ga / 2EI x/a
- * * (Fa ∨¬ Ga) • (¬ Ga ∨¬ Ga) / 5DeM
- * * ¬ Ga / 6Simp.
- * * Fa ∨¬ Ga / 6Simp.
- * * (Fa ∨¬ Ga) ⊃Ga / 4UI y/a
- * * Ga / 8,9MP
- * * Ga • ¬ Ga / 10,7Conj.
- * ¬ ¬ (∃y)[(Fy ∨¬ Gy) • ¬ Gy] /IP
- * (∃y)[(Fy ∨¬ Gy) • ¬ Gy] / 12DN
- (∃x)[(Fx • ¬ Gx) ∨¬ Gx] ⊃(∃y)[(Fy ∨¬ Gy) • ¬ Gy]
No comments:
Post a Comment