The argument is put thus:
Anyone who has climbed Mt Blanc is braver than anyone who has not. Of all those on our team, only the youngest has climbed Mr Blanc. Everyone on our team is a veteran. Therefore, the bravest member of our team is a veteran.
(Cx: has climbed Mt Blanc, Tx: is on our team, Vx: is a veteran, Bxy: is braver than y, Oxy: is older than y)
- (x)[Cx ⊃(y)(¬ Cy ⊃Bxy)]
- (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃(Oyx • ¬ Cx)} • Cx}
- (x)(Tx ⊃Vx)
- ∴ (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx}
- * ¬ (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx} / AIP
- * (x){{Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} ⊃¬ Vx} / 5QC
- * Tm • (y){[Ty • ¬ (y = m)] ⊃(Oym • ¬ Cm)} • Cm / 2EI x/m
- * Tm / 7Simp.
- * Cm / 7Simp.
- * Tm ⊃Vm / 3UI x/m
- * Vm / 8,10MP
- * {Tm • (y){[Ty • ¬ (y = m)] ⊃Bmy}} ⊃¬ Vm / 6UI x/m
- * ¬ {Tm • (y){[Ty • ¬ (y = m)] ⊃Bmy}} / 11,12MT
- * ¬ Tm ∨ ¬ (y){[Ty • ¬ (y = m) ⊃Bmy } / 13MI
- * ¬ (y){[Ty • ¬ (y = m) ⊃Bmy } / 8,14DS
- * (∃y)[Ty • ¬ (y = m) • ¬ Bmy) / 15QC
- * Ta • ¬ (a = m) • ¬ Bma / 16EI y/a
- * ¬ Bma / 17Simp.
- * Cm ⊃(y)(¬ Cy ⊃Bmy) / 1UI x/m
- * (y)(¬ Cy ⊃Bmy) / 9,19MP
- * ¬ Ca ⊃Bma / 20UI y/a
- * Ca / 18,21MT
- * Ta • ¬ (a = m) / 17Simp.
- * (y){[Ty • ¬ (y = m)] ⊃(Oym • ¬ Cm)} / 7Simp.
- * [Ta • ¬ (a = m)] ⊃(Oam • ¬ Cm)} / 24UI y/a
- * Oam • ¬ Cm / 23,25MP
- * ¬ Cm / 26Simp.
- * Cm • ¬ Cm / 22,27Conj.
- ¬ ¬ (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx} / 5-28IP
- (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx} / 29DN
No comments:
Post a Comment