Thursday, 8 July 2010

Symbolic Logic, Irving M. Copi, 5th edition, p. 150, problem 8

The argument is put thus:
Anyone who has climbed Mt Blanc is braver than anyone who has not. Of all those on our team, only the youngest has climbed Mr Blanc. Everyone on our team is a veteran. Therefore, the bravest member of our team is a veteran.
(Cx: has climbed Mt Blanc, Tx: is on our team, Vx: is a veteran, Bxy: is braver than y, Oxy: is older than y)
  1. (x)[Cx ⊃(y)(¬ Cy ⊃Bxy)]
  2. (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃(Oyx • ¬ Cx)} • Cx}
  3. (x)(Tx ⊃Vx)
  4. ∴ (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx}
  5. * ¬ (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx} / AIP
  6. * (x){{Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} ⊃¬ Vx} / 5QC
  7. * Tm • (y){[Ty • ¬ (y = m)] ⊃(Oym • ¬ Cm)} • Cm / 2EI x/m
  8. * Tm / 7Simp.
  9. * Cm / 7Simp.
  10. * Tm ⊃Vm / 3UI x/m
  11. * Vm / 8,10MP
  12. * {Tm • (y){[Ty • ¬ (y = m)] ⊃Bmy}} ⊃¬ Vm / 6UI x/m
  13. * ¬ {Tm • (y){[Ty • ¬ (y = m)] ⊃Bmy}} / 11,12MT
  14. * ¬ Tm ∨ ¬ (y){[Ty • ¬ (y = m) ⊃Bmy } / 13MI
  15. * ¬ (y){[Ty • ¬ (y = m) ⊃Bmy } / 8,14DS
  16. * (∃y)[Ty • ¬ (y = m) • ¬ Bmy) / 15QC
  17. * Ta • ¬ (a = m) • ¬ Bma / 16EI y/a
  18. * ¬ Bma / 17Simp.
  19. * Cm ⊃(y)(¬ Cy ⊃Bmy) / 1UI x/m
  20. * (y)(¬ Cy ⊃Bmy) / 9,19MP
  21. * ¬ Ca ⊃Bma / 20UI y/a
  22. * Ca / 18,21MT
  23. * Ta • ¬ (a = m) / 17Simp.
  24. * (y){[Ty • ¬ (y = m)] ⊃(Oym • ¬ Cm)} / 7Simp.
  25. * [Ta • ¬ (a = m)] ⊃(Oam • ¬ Cm)} / 24UI y/a
  26. * Oam • ¬ Cm / 23,25MP
  27. * ¬ Cm / 26Simp.
  28. * Cm • ¬ Cm / 22,27Conj.
  29. ¬ ¬ (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx} / 5-28IP
  30. (∃x){Tx • (y){[Ty • ¬ (y = x)] ⊃Bxy} • Vx} / 29DN

No comments:

Post a Comment