Thursday 15 July 2010

Symbolic Logic, Dale Jacquette, Wadsworth, 2001, Chpt. 8, Ex. III, problem 14, p. 434

We are to prove a tautology. Note that we can generalize by UG on line 18 to (x)Fx because we are now outside the scope of the assumption made on line 14.

├ ¬ (∃x)[Fx • (Ga ⊃Ha)] ≡ [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx]

  1. ¬ (∃x)[Fx • (Ga ⊃Ha)] ⊃[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx]
  2. * ¬ (∃x)[Fx • (Ga ⊃Ha)] / ACP
  3. * (x)[Fx ⊃¬ (Ga ⊃Ha)] / 2QC
  4. * * (∃x)Fx / ACP
  5. * * Fm / 4EI x/m
  6. * * Fm ⊃¬ (Ga ⊃Ha) / 3UI x/m
  7. * * ¬ (Ga ⊃Ha) / 5,6MP
  8. * (∃x)Fx ⊃¬ (Ga ⊃Ha) / 4-7CP
  9. * (Ga ⊃Ha) ⊃¬ (∃x)Fx / 8Contrap.
  10. * (¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx / 9MI
  11. ¬ (∃x)[Fx • (Ga ⊃Ha)] ⊃[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] / 2-10CP
  12. [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] ⊃¬ (∃x)[Fx • (Ga ⊃Ha)]
  13. * (¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx / ACP
  14. * * Fx / ACP
  15. * * (∃x)Fx / 14EG
  16. * * ¬ (¬ Ga ∨Ha) / 15,13MT
  17. * Fx ⊃¬ (¬ Ga ∨Ha) / 14-16CP
  18. * (x)[Fx ⊃¬ (¬ Ga ∨Ha)] / 17UG
  19. * (x)[¬ Fx ∨¬ (¬ Ga ∨Ha)] / 18MI
  20. * (x) ¬ [Fx • (Ga ⊃Ha)] / 19DeM
  21. * ¬ (∃x)[Fx • (Ga ⊃Ha)] / 20QC
  22. [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] ⊃¬ (∃x)[Fx • (Ga ⊃Ha)] / 13-21CP
  23. {¬ (∃x)[Fx • (Ga ⊃Ha)] ⊃[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx]} • {[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] ⊃¬ (∃x)[Fx • (Ga ⊃Ha)]} / 11,22Conj.
  24. ¬ (∃x)[Fx • (Ga ⊃Ha)] ≡ [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] / 23BE

No comments:

Post a Comment