We are to prove a tautology. Note that we can generalize by UG on line 18 to (x)Fx because we are now outside the scope of the assumption made on line 14.
├ ¬ (∃x)[Fx • (Ga ⊃Ha)] ≡ [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx]
- ¬ (∃x)[Fx • (Ga ⊃Ha)] ⊃[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx]
- * ¬ (∃x)[Fx • (Ga ⊃Ha)] / ACP
- * (x)[Fx ⊃¬ (Ga ⊃Ha)] / 2QC
- * * (∃x)Fx / ACP
- * * Fm / 4EI x/m
- * * Fm ⊃¬ (Ga ⊃Ha) / 3UI x/m
- * * ¬ (Ga ⊃Ha) / 5,6MP
- * (∃x)Fx ⊃¬ (Ga ⊃Ha) / 4-7CP
- * (Ga ⊃Ha) ⊃¬ (∃x)Fx / 8Contrap.
- * (¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx / 9MI
- ¬ (∃x)[Fx • (Ga ⊃Ha)] ⊃[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] / 2-10CP
- [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] ⊃¬ (∃x)[Fx • (Ga ⊃Ha)]
- * (¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx / ACP
- * * Fx / ACP
- * * (∃x)Fx / 14EG
- * * ¬ (¬ Ga ∨Ha) / 15,13MT
- * Fx ⊃¬ (¬ Ga ∨Ha) / 14-16CP
- * (x)[Fx ⊃¬ (¬ Ga ∨Ha)] / 17UG
- * (x)[¬ Fx ∨¬ (¬ Ga ∨Ha)] / 18MI
- * (x) ¬ [Fx • (Ga ⊃Ha)] / 19DeM
- * ¬ (∃x)[Fx • (Ga ⊃Ha)] / 20QC
- [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] ⊃¬ (∃x)[Fx • (Ga ⊃Ha)] / 13-21CP
- {¬ (∃x)[Fx • (Ga ⊃Ha)] ⊃[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx]} • {[(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] ⊃¬ (∃x)[Fx • (Ga ⊃Ha)]} / 11,22Conj.
- ¬ (∃x)[Fx • (Ga ⊃Ha)] ≡ [(¬ Ga ∨Ha) ⊃ ¬ (∃x)Fx] / 23BE
No comments:
Post a Comment