Thursday, 23 September 2010

Understanding Symbolic Logic, Virginia Klenk, Pearson Prentice Hall, 2008, Unit 18, Ex.1, problem (r), p. 354

We have to derive the conclusion from the premises given. Hint: It is tempting to use indirect proof because the conclusion is a simple existential statement, but this would not work very effectively here. It is easier to instantiate the premises and work through them until we isolate, by Modus Ponens, Wz on the first line.
  1. (x){[Ax • ¬ (y)(Dxy ⊃Rxy)] ⊃(z)(Tzx ⊃Wz)}
  2. ¬ (∃x)(∃y)(Tyx • ¬ Dxy)
  3. ¬ (x)[Ax ⊃(y)(Tyx ⊃Rxy)
  4. ∴(∃x)Wx
  5. (∃x)[Ax • (∃y)(Tyx • ¬ Rxy) ......... 3CQ
  6. (x)(y)(Tyx ⊃Dxy) ......... 2CQ
  7. Aa • (∃y)(Tya • ¬ Ray) ......... 5EI x/a
  8. Aa ......... 7Simp.
  9. (∃y)(Tya • ¬ Ray) ......... 7Simp.
  10. Tma • ¬ Ram ......... 9EI y/m
  11. Tma ......... 10Simp.
  12. ¬ Ram ......... 10Simp.
  13. (y)(Tya ⊃Day) ......... 6UI x/a
  14. Tma ⊃Dam ......... 13UI y/m
  15. Dam ......... 11,14MP
  16. Dam • ¬ Ram ......... 15,12Conj.
  17. (∃y)(Day • ¬ Ray) ......... 16EG
  18. (∃y)¬ ( ¬ Day ∨ Ray) ......... 17DeM
  19. (∃y)¬ (Day ⊃ Ray) ......... 18MI
  20. ¬ (y)(Day ⊃Ray) ......... 19CQ
  21. [Aa • ¬ (y)(Day ⊃Ray)] ⊃(z)(Tza ⊃Wz)} ......... 1UI x/a
  22. Aa • ¬ (y)(Day ⊃Ray) ......... 8,20Conj.
  23. (z)(Tza ⊃Wz) ......... 22,21MP
  24. Tma ⊃Wm ......... 23UI z/m
  25. Wm ......... 11,24MP
  26. (∃x)Wx ......... 25UG

No comments:

Post a Comment