We have to derive the conclusion from the premises given. Hint: It is tempting to use indirect proof because the conclusion is a simple existential statement, but this would not work very effectively here. It is easier to instantiate the premises and work through them until we isolate, by Modus Ponens, Wz on the first line.
- (x){[Ax • ¬ (y)(Dxy ⊃Rxy)] ⊃(z)(Tzx ⊃Wz)}
- ¬ (∃x)(∃y)(Tyx • ¬ Dxy)
- ¬ (x)[Ax ⊃(y)(Tyx ⊃Rxy)
- ∴(∃x)Wx
- (∃x)[Ax • (∃y)(Tyx • ¬ Rxy) ......... 3CQ
- (x)(y)(Tyx ⊃Dxy) ......... 2CQ
- Aa • (∃y)(Tya • ¬ Ray) ......... 5EI x/a
- Aa ......... 7Simp.
- (∃y)(Tya • ¬ Ray) ......... 7Simp.
- Tma • ¬ Ram ......... 9EI y/m
- Tma ......... 10Simp.
- ¬ Ram ......... 10Simp.
- (y)(Tya ⊃Day) ......... 6UI x/a
- Tma ⊃Dam ......... 13UI y/m
- Dam ......... 11,14MP
- Dam • ¬ Ram ......... 15,12Conj.
- (∃y)(Day • ¬ Ray) ......... 16EG
- (∃y)¬ ( ¬ Day ∨ Ray) ......... 17DeM
- (∃y)¬ (Day ⊃ Ray) ......... 18MI
- ¬ (y)(Day ⊃Ray) ......... 19CQ
- [Aa • ¬ (y)(Day ⊃Ray)] ⊃(z)(Tza ⊃Wz)} ......... 1UI x/a
- Aa • ¬ (y)(Day ⊃Ray) ......... 8,20Conj.
- (z)(Tza ⊃Wz) ......... 22,21MP
- Tma ⊃Wm ......... 23UI z/m
- Wm ......... 11,24MP
- (∃x)Wx ......... 25UG
No comments:
Post a Comment