We are asked to show that the following statement is a theorem in predicate logic: (x)(∃y)(Ax ∨By) ≡ (∃y)(x)(Ax ∨By). Under Claim 1 we cannot just drop the quantifiers and restore them in reverse order because of the restriction saying that if every x is in a relation to some y, it doesn't follow that there is a y such that every x is in this relation to it. We are not bound by such a restriction under Claim 2.
- (x)(∃y)(Ax ∨By) ≡ (∃y)(x)(Ax ∨By)
- Claim 1: (x)(∃y)(Ax ∨By) ⊃ (∃y)(x)(Ax ∨By)
- * (x)(∃y)(Ax ∨By) ......... ACP
- * * ¬ (∃y)(x)(Ax ∨By) ......... AIP
- * * (y)(∃x)(¬ Ax • ¬ By) ......... 4CQ
- * * (∃y)(Ax ∨By) ......... 2UI x/x
- * * Ax ∨Bm ......... 6EI y/m
- * * (∃x)(¬ Ax • ¬ Bm) ......... 5UI y/m
- * * ¬ Aa • ¬ Bm ......... 8EI x/a
- * * ¬ Bm ......... 8Simp.
- * * Ax ......... 10,7DS
- * * ¬ Aa ......... 8Simp.
- * * (y)Ay ......... 11UG
- * * (∃y) ¬ Ay ......... 12EG
- * * ¬ Ar ......... 14EI y/r
- * * Ar ......... 13UI y/r
- * * Ar • ¬ Ar ......... 16,15Conj.
- * ¬ ¬ (∃y)(x)(Ax ∨By) ......... 4-17IP
- * (∃y)(x)(Ax ∨By) ......... 18DN
- (x)(∃y)(Ax ∨By) ⊃ (∃y)(x)(Ax ∨By) ......... 3-19CP
- Claim 2: (∃y)(x)(Ax ∨By) ⊃(x)(∃y)(Ax ∨By)
- * (∃y)(x)(Ax ∨By) ......... ACP
- * (x)(Ax ∨Bm) ......... 22EI y/m
- * Ax ∨Bm ......... 23UI x/x
- * (∃y)(Ax ∨By) ......... 24EG
- * (x)(∃y)(Ax ∨By) ......... 25UG
- (∃y)(x)(Ax ∨By) ⊃(x)(∃y)(Ax ∨By) ......... 22-26CP
- {(x)(∃y)(Ax ∨By) ⊃ (∃y)(x)(Ax ∨By)} • {(∃y)(x)(Ax ∨By) ⊃(x)(∃y)(Ax ∨By)} ......... 20,27Conj.
- (x)(∃y)(Ax ∨By) ≡ (∃y)(x)(Ax ∨By) ......... 28BE
No comments:
Post a Comment