Thursday, 16 September 2010

Symbolic Logic, Irving M.Copi, Prentice Hall, 5th edition, 1973, p. 150, problem 9

The argument is set as follows:

There is exactly one penny in my right hand. There is exactly one penny in my left hand. Nothing is in both my hands. Therefore, there are exactly two pennies in my hands.

To prove it is not a challenge, to translate it into logical notation is.
  1. (∃x){Px • Rx • (y)[(Py • Ry) ⊃y = x]}
  2. (∃x){Px • Lx • (y)[(Py • Ly) ⊃y = x]}
  3. ¬ (∃x)(Lx • Rx)
  4. ∴(∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}}
  5. * ¬ (∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}} ......... AIP
  6. * (x)(y){[Px • Py • Rx • Ly • ¬ (x = y)] ⊃(∃z)[Pz • (Rz ∨Lz) • ¬ (z = x) • ¬ (z = y)]} ......... 5CQ
  7. * Pa • Ra • (y)[(Py • Ry) ⊃y = a] ......... 1EI x/a
  8. * Pm • Lm • (y)[(Py • Ly) ⊃y = m] ......... 2EI x/m
  9. * (x)(Lx ⊃¬ Rx) ......... 3CQ
  10. * Lm ⊃¬ Rm ......... 9UI x/m
  11. * Lm ......... 8Simp.
  12. * ¬ Rm ......... 11,10MP
  13. * Ra ......... 7Simp.
  14. * ¬ (a = m) ......... 12,13Id.
  15. * Pa ......... 7Simp.
  16. * Pm ......... 8Simp.
  17. * Pa • Pm • Ra • Lm • ¬ (a = m) ......... 15,16,13,11Conj.
  18. * (y){[Pa • Py • Ra • Ly • ¬ (a = y)] ⊃(∃z)[Pz • (Rz ∨Lz) • ¬ (z = a) • ¬ (z = y)] ......... 6UI x/a
  19. * [Pa • Pm • Ra • Lm • ¬ (a = m)] ⊃(∃z)[Pz • (Rz ∨Lz) • ¬ (z = a) • ¬ (z = m)] ......... 18UI y/m
  20. * (∃z)[Pz • (Rz ∨Lz) • ¬ (z = a) • ¬ (z = m)] ......... 17,19MP
  21. * Pr • (Rr ∨Lr) • ¬ (r = a) • ¬ (r = m) ......... 20EI z/r
  22. * (y)[(Py • Ry) ⊃y = a] ......... 7Simp.
  23. * (Pr • Rr) ⊃r = a ......... 22UI y/r
  24. * ¬ (r = a) ......... 21Simp.
  25. * ¬ (Pr • Rr) ......... 23,24MT
  26. * ¬ Pr ∨¬ Rr ......... 25DeM
  27. * Pr ......... 21Simp.
  28. * ¬ Rr ......... 27,26DS
  29. * Rr ∨Lr ......... 21Simp.
  30. * Lr ......... 28,29DS
  31. * (y)[(Py • Ly) ⊃y = m] ......... 8Simp.
  32. * (Pr • Lr) ⊃r = m ......... 31UI y/r
  33. * Pr • Lr ......... 27,30Conj.
  34. * r = m ......... 33,32MP
  35. * ¬ (r = m) ......... 21Simp.
  36. * r = m • ¬ (r = m) ......... 34,35Conj.
  37. ¬ ¬ (∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}} ......... 5-36IP
  38. (∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}} ......... 37DN

No comments:

Post a Comment