The argument is set as follows:
There is exactly one penny in my right hand. There is exactly one penny in my left hand. Nothing is in both my hands. Therefore, there are exactly two pennies in my hands.
To prove it is not a challenge, to translate it into logical notation is.
- (∃x){Px • Rx • (y)[(Py • Ry) ⊃y = x]}
- (∃x){Px • Lx • (y)[(Py • Ly) ⊃y = x]}
- ¬ (∃x)(Lx • Rx)
- ∴(∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}}
- * ¬ (∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}} ......... AIP
- * (x)(y){[Px • Py • Rx • Ly • ¬ (x = y)] ⊃(∃z)[Pz • (Rz ∨Lz) • ¬ (z = x) • ¬ (z = y)]} ......... 5CQ
- * Pa • Ra • (y)[(Py • Ry) ⊃y = a] ......... 1EI x/a
- * Pm • Lm • (y)[(Py • Ly) ⊃y = m] ......... 2EI x/m
- * (x)(Lx ⊃¬ Rx) ......... 3CQ
- * Lm ⊃¬ Rm ......... 9UI x/m
- * Lm ......... 8Simp.
- * ¬ Rm ......... 11,10MP
- * Ra ......... 7Simp.
- * ¬ (a = m) ......... 12,13Id.
- * Pa ......... 7Simp.
- * Pm ......... 8Simp.
- * Pa • Pm • Ra • Lm • ¬ (a = m) ......... 15,16,13,11Conj.
- * (y){[Pa • Py • Ra • Ly • ¬ (a = y)] ⊃(∃z)[Pz • (Rz ∨Lz) • ¬ (z = a) • ¬ (z = y)] ......... 6UI x/a
- * [Pa • Pm • Ra • Lm • ¬ (a = m)] ⊃(∃z)[Pz • (Rz ∨Lz) • ¬ (z = a) • ¬ (z = m)] ......... 18UI y/m
- * (∃z)[Pz • (Rz ∨Lz) • ¬ (z = a) • ¬ (z = m)] ......... 17,19MP
- * Pr • (Rr ∨Lr) • ¬ (r = a) • ¬ (r = m) ......... 20EI z/r
- * (y)[(Py • Ry) ⊃y = a] ......... 7Simp.
- * (Pr • Rr) ⊃r = a ......... 22UI y/r
- * ¬ (r = a) ......... 21Simp.
- * ¬ (Pr • Rr) ......... 23,24MT
- * ¬ Pr ∨¬ Rr ......... 25DeM
- * Pr ......... 21Simp.
- * ¬ Rr ......... 27,26DS
- * Rr ∨Lr ......... 21Simp.
- * Lr ......... 28,29DS
- * (y)[(Py • Ly) ⊃y = m] ......... 8Simp.
- * (Pr • Lr) ⊃r = m ......... 31UI y/r
- * Pr • Lr ......... 27,30Conj.
- * r = m ......... 33,32MP
- * ¬ (r = m) ......... 21Simp.
- * r = m • ¬ (r = m) ......... 34,35Conj.
- ¬ ¬ (∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}} ......... 5-36IP
- (∃x)(∃y){Px • Py • Rx • Ly • ¬ (x = y) • (z){[Pz • (Rz ∨Lz)] ⊃z = x ∨z = y}} ......... 37DN
No comments:
Post a Comment