Thursday, 10 June 2010

Understanding Symbolic Logic, Virginia Klenk, Pearson Prentice Hall, 2008, 5th edition, Unit 18, Ex. 1(p), p. 354

Construct a proof for the following argument. Tip: we can't generalize by universal generalization within the scope of an assumption if the assumption contains a free variable on the first line, but we are within our rights to do so by existential generalization (line 20). Then, it is just the question of pushing the negation out, which changes the quantifier to a universal one (line 21).


  1. (∃x)[Px • (y)(Sy ⊃Txy)]
  2. (x){[Px • ¬ (y)(Wy ⊃Ayx)] ⊃(z)(Bxz ⊃Sz)}
  3. (x){Px ⊃¬ (∃y)(Wy • (Txy ∨ Ayx)]}
  4. ∴(∃x){Px • (y)[Wy ⊃¬ (Ayx ∨Bxy)]}
  5. Pa • (y)(Sy ⊃Tay) / 1EI x/a
  6. Pa ⊃¬ (∃y)(Wy • (Tay ∨ Aya) / 3UI x/a
  7. Pa / 5Simp.
  8. ¬ (∃y)(Wy • (Tay ∨ Aya) / 7,6MP
  9. (y)[Wy ⊃¬ (Tay ∨ Aya)] / 8QC
  10. * Wy / ACP
  11. * Wy ⊃¬ (Tay ∨ Aya) / 9UI y/y
  12. * ¬ (Tay ∨ Aya) / 10,11MP
  13. * ¬ Tay • ¬ Aya / 12DeM
  14. * (y)(Sy ⊃Tay) / 5Simp.
  15. * Sy ⊃Tay / 14UI y/y
  16. * ¬ Tay / 13Simp.
  17. * ¬ Sy / 16,15MT
  18. * ¬ Aya / 13Simp.
  19. * Wy • ¬ Aya / 10,18Conj.
  20. * (∃y)(Wy • ¬ Aya) / 19EG
  21. * ¬ (y)(Wy ⊃Aya) / 20QC
  22. * Pa • ¬ (y)(Wy ⊃Aya) / 7,21Conj.
  23. * [Pa • ¬ (y)(Wy ⊃Aya)] ⊃(z)(Baz ⊃Sz) / 2UI x/a
  24. * (z)(Baz ⊃Sz) / 22,23MP
  25. * Bay ⊃Sy / 24UI z/y
  26. * ¬ Bay / 17,25MT
  27. * ¬ Bay • ¬ Aya / 26,18Conj.
  28. * ¬ (Bay ∨ Aya) / 27DeM
  29. Wy ⊃ ¬ (Bay ∨ Aya) / 10-28CP
  30. (y)[Wy ⊃¬ (Aya ∨Bay)] / 29UG
  31. Pa • (y)[Wy ⊃¬ (Aya ∨Bay)] / 7,30Conj.
  32. (∃x){Px • (y)[Wy ⊃¬ (Ayx ∨Bxy)]} / 31EG

No comments:

Post a Comment