Construct a proof for the following argument. Tip: we can't generalize by universal generalization within the scope of an assumption if the assumption contains a free variable on the first line, but we are within our rights to do so by existential generalization (line 20). Then, it is just the question of pushing the negation out, which changes the quantifier to a universal one (line 21).
- (∃x)[Px • (y)(Sy ⊃Txy)]
- (x){[Px • ¬ (y)(Wy ⊃Ayx)] ⊃(z)(Bxz ⊃Sz)}
- (x){Px ⊃¬ (∃y)(Wy • (Txy ∨ Ayx)]}
- ∴(∃x){Px • (y)[Wy ⊃¬ (Ayx ∨Bxy)]}
- Pa • (y)(Sy ⊃Tay) / 1EI x/a
- Pa ⊃¬ (∃y)(Wy • (Tay ∨ Aya) / 3UI x/a
- Pa / 5Simp.
- ¬ (∃y)(Wy • (Tay ∨ Aya) / 7,6MP
- (y)[Wy ⊃¬ (Tay ∨ Aya)] / 8QC
- * Wy / ACP
- * Wy ⊃¬ (Tay ∨ Aya) / 9UI y/y
- * ¬ (Tay ∨ Aya) / 10,11MP
- * ¬ Tay • ¬ Aya / 12DeM
- * (y)(Sy ⊃Tay) / 5Simp.
- * Sy ⊃Tay / 14UI y/y
- * ¬ Tay / 13Simp.
- * ¬ Sy / 16,15MT
- * ¬ Aya / 13Simp.
- * Wy • ¬ Aya / 10,18Conj.
- * (∃y)(Wy • ¬ Aya) / 19EG
- * ¬ (y)(Wy ⊃Aya) / 20QC
- * Pa • ¬ (y)(Wy ⊃Aya) / 7,21Conj.
- * [Pa • ¬ (y)(Wy ⊃Aya)] ⊃(z)(Baz ⊃Sz) / 2UI x/a
- * (z)(Baz ⊃Sz) / 22,23MP
- * Bay ⊃Sy / 24UI z/y
- * ¬ Bay / 17,25MT
- * ¬ Bay • ¬ Aya / 26,18Conj.
- * ¬ (Bay ∨ Aya) / 27DeM
- Wy ⊃ ¬ (Bay ∨ Aya) / 10-28CP
- (y)[Wy ⊃¬ (Aya ∨Bay)] / 29UG
- Pa • (y)[Wy ⊃¬ (Aya ∨Bay)] / 7,30Conj.
- (∃x){Px • (y)[Wy ⊃¬ (Ayx ∨Bxy)]} / 31EG
No comments:
Post a Comment