Thursday, 25 March 2021

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed,. 8.7, III, 12 p. 449

The only dogs that barked were Fido and Pluto. Fido is not Pluto. Every dog except Fido ran on the beach. Therefore, exactly one barking dog ran on the beach. (Dx: x is a dog; Bx: x barked; Rx: x ran on the beach; f: Fido; p: Pluto)


1.     Df • Bf • Dp • Bp • (x)[(Dx • Bx) ⊃ (x = f v x = p)]

2.     ≠ p

3.     Df • ~ Rf • (x)[(Dx • x ≠ f) ⊃ Rx]

∴ (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

4.     (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

5.     (x) ~ {Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

6.     (x){~ (Dx • Bx • Rx) v ~ (y) [(Dy • By • Ry)  x = y)]}

7.     (x){~ (Dx • Bx • Rx) v (y) ~ [(Dy • By • Ry)  x = y)]}

8.     (x){~ (Dx • Bx • Rx) v (y) ~ [~ (Dy • By • Ry) v x = y)]}

9.     (x){~ (Dx • Bx • Rx) v (y) [(Dy • By • Ry) • x  y)]}

10.  Dp • Bp • Df • Bf • (x)[(Dx • Bx) ⊃ (x = f v x = p)]

11.  Dp

12.  ≠ f

13.  Dp • ≠ f

14.  (x)[(Dx • x ≠ f) ⊃ Rx] • Df • ~ Rf

15.  (x)[(Dx • x ≠ f) ⊃ Rx]

16.  (Dp • p ≠ f) ⊃ Rp

17.  Rp

18.  ~ (Dp • Bp • Rp) v (y) [(Dy • By • Ry) • p  y)]

19.  Dp • Bp

20.  Dp • Bp • Rp

21.  (y)[(Dy • By • Ry) • p  y)]

22.  Dm • Bm • Rm • p  m

23.  (x)[(Dx • Bx) ⊃ (x = f v x = p)] • Df • Bf • Dp • Bp

24.  (x)[(Dx • Bx) ⊃ (x = f v x = p)]

25.  (Dm • Bm) ⊃ (m = f v m = p)

26.  Dm • Bm

27.  m = f v m = p

28.   m • Dm • Bm • Rm

29.  ≠ m

30.  ≠ p

31.  m = f

32.  Rm • Dm • Bm • p  m

33.  Rm

34.  Rf

35.  ~ Rf • Df • (x)[(Dx • x ≠ f) ⊃ Rx]

36.  ~ Rf

37.  Rf • ~ Rf

38.  (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

39.  (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

 

 

 

 

AIP

4 QC

5 DM

6 QC

7 Impl

8 DM

1 Com

10 Simp

2 Id

11,12 Conj

3 Com

13 Simp

15 UI

13,16 MP

9 UI

10 Simp

17,19 Conj

18,20 DS

21 EI

1 Com

23 Simp

24 UI

22 EI

25,26 MP

22 Com

28 Simp

29 Id

27,30 DS

22 Com

32 Simp

31,33 Id

3 Com

25 Simp

34,36 Conj

4-37 IP

38 DN

No comments:

Post a Comment