Thursday, 18 March 2021

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed,. 8.7, III, 11 p. 448

There are at least two philosophers in the library. Robert is the only French philosopher in the library. Therefore, there is a philosopher in the library who is not French. (Px: x is a philosopher; Lx: x is in the library; Fx: x is French; r: r is Robert)

1.     (∃x)(∃y)(Px • Lx • Py • Ly • x ≠ y)

2.     Pr • Fr • Lr • (x)[(Px • Fx • Lx) ⊃ x = r]

∴ (∃x)(Px • Lx • ~ Fx)

3.     ~ (∃x)(Px • Lx • ~ Fx)

4.     (x)~ (Px • Lx • ~ Fx)

5.     (x)[~ (Px • Lx) v Fx]

6.     (x)[( Px • Lx) ⊃ Fx]

7.     (∃y)(Pm • Lm • Py • Ly • m ≠ y)

8.     Pm • Lm • Pq • Lq • m ≠ q

9.     (Pm • Lm) ⊃ Fm

10. Pm • Lm

11. Fm

12. (x)[(Px • Fx • Lx) ⊃ x = r] • Pr • Fr • Lr

13. (x)[(Px • Fx • Lx) ⊃ x = r]

14. (Pm • Fm • Lm) ⊃ m = r

15. Pm • Lm • Fm

16. Pm • Fm • Lm

17. m = r

18. (Pq • Fq • Lq) ⊃ q = r

19. (Pq • Lq) ⊃ Fq

20. Pq • Lq • Pm • Lm • m ≠ q

21. Pq • Lq

22. Fq

23. Pq • Lq • Fq

24. Pq • Fq • Lq

25. q = r

26. r = q

27. m = q

28. ≠ q • Pq • Lq • Pm • Lm

29. ≠ q

30. ≠ q • m = q

31. ~ ~ (∃x)(Px • Lx • ~ Fx)

32. (∃x)(Px • Lx • ~ Fx)

 

 

 

AIP

3 QC

4 DM

5 Impl

1 EI

7 EI

6 UI

8 Simp

9,10 MP

2 Com

12 Simp

13 UI

10,11 Conj

15 Com

14,16 MP

13 UI

6 UI

8 Com

20 Simp

19,21 MP

21,22 Conj

23 Com

18,24 MP

25 Com

17,26 Id

20 Com

28 Simp

27, 29 Conj

3-30 IP

31 DN

No comments:

Post a Comment