There are at least two philosophers in the library. Robert is the only French philosopher in the library. Therefore, there is a philosopher in the library who is not French. (Px: x is a philosopher; Lx: x is in the library; Fx: x is French; r: r is Robert)
1. (∃x)(∃y)(Px • Lx • Py • Ly • x ≠ y) 2. Pr • Fr • Lr • (x)[(Px • Fx • Lx) ⊃ x = r] ∴ (∃x)(Px • Lx • ~ Fx)
31. ~ ~ (∃x)(Px • Lx • ~ Fx) 32. (∃x)(Px • Lx • ~ Fx) |
AIP 3 QC 4 DM 5 Impl 1 EI 7 EI 6 UI 8 Simp 9,10 MP 2 Com 12 Simp 13 UI 10,11 Conj 15 Com 14,16 MP 13 UI 6 UI 8 Com 20 Simp 19,21 MP 21,22 Conj 23 Com 18,24 MP 25 Com 17,26 Id 20 Com 28 Simp 27, 29 Conj 3-30 IP 31 DN |
No comments:
Post a Comment