Thursday, 25 March 2021

Decisions, wartime solutions

When I was young, I made good decisions fast. Now that I am old, I make bad decisions slowly, which is why I prefer old age.

I make better decisions on a full stomach than on an empty stomach, but I make the best decisions with an empty bladder.

 

Not for the first time might wartime solutions come in handy in peacetime. Thus, the message: 'hands, face, space', could be refined for the post-pandemic times to read: sanitise your ideas, flaunt not your ignorance, mind your own business.

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed,. 8.7, III, 12 p. 449

The only dogs that barked were Fido and Pluto. Fido is not Pluto. Every dog except Fido ran on the beach. Therefore, exactly one barking dog ran on the beach. (Dx: x is a dog; Bx: x barked; Rx: x ran on the beach; f: Fido; p: Pluto)


1.     Df • Bf • Dp • Bp • (x)[(Dx • Bx) ⊃ (x = f v x = p)]

2.     ≠ p

3.     Df • ~ Rf • (x)[(Dx • x ≠ f) ⊃ Rx]

∴ (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

4.     (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

5.     (x) ~ {Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

6.     (x){~ (Dx • Bx • Rx) v ~ (y) [(Dy • By • Ry)  x = y)]}

7.     (x){~ (Dx • Bx • Rx) v (y) ~ [(Dy • By • Ry)  x = y)]}

8.     (x){~ (Dx • Bx • Rx) v (y) ~ [~ (Dy • By • Ry) v x = y)]}

9.     (x){~ (Dx • Bx • Rx) v (y) [(Dy • By • Ry) • x  y)]}

10.  Dp • Bp • Df • Bf • (x)[(Dx • Bx) ⊃ (x = f v x = p)]

11.  Dp

12.  ≠ f

13.  Dp • ≠ f

14.  (x)[(Dx • x ≠ f) ⊃ Rx] • Df • ~ Rf

15.  (x)[(Dx • x ≠ f) ⊃ Rx]

16.  (Dp • p ≠ f) ⊃ Rp

17.  Rp

18.  ~ (Dp • Bp • Rp) v (y) [(Dy • By • Ry) • p  y)]

19.  Dp • Bp

20.  Dp • Bp • Rp

21.  (y)[(Dy • By • Ry) • p  y)]

22.  Dm • Bm • Rm • p  m

23.  (x)[(Dx • Bx) ⊃ (x = f v x = p)] • Df • Bf • Dp • Bp

24.  (x)[(Dx • Bx) ⊃ (x = f v x = p)]

25.  (Dm • Bm) ⊃ (m = f v m = p)

26.  Dm • Bm

27.  m = f v m = p

28.   m • Dm • Bm • Rm

29.  ≠ m

30.  ≠ p

31.  m = f

32.  Rm • Dm • Bm • p  m

33.  Rm

34.  Rf

35.  ~ Rf • Df • (x)[(Dx • x ≠ f) ⊃ Rx]

36.  ~ Rf

37.  Rf • ~ Rf

38.  (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

39.  (∃x){Dx • Bx • Rx • (y)[(Dy • By • Ry)  x = y)]}

 

 

 

 

AIP

4 QC

5 DM

6 QC

7 Impl

8 DM

1 Com

10 Simp

2 Id

11,12 Conj

3 Com

13 Simp

15 UI

13,16 MP

9 UI

10 Simp

17,19 Conj

18,20 DS

21 EI

1 Com

23 Simp

24 UI

22 EI

25,26 MP

22 Com

28 Simp

29 Id

27,30 DS

22 Com

32 Simp

31,33 Id

3 Com

25 Simp

34,36 Conj

4-37 IP

38 DN

Thursday, 18 March 2021

Lying, civilisation, constitutional freedoms

I lie not to hide my feelings but because I have limited truth vocabulary. What does one say for example when one has almost had a good time? And I almost always almost have a good time – more often anyway than a good time, a fabulous time or an awful time.

I’ve heard it said that the ambulance siren is a triumph of civilisation. I’ve heard the same said about the ringing of church bells. Personally, I stand by the flushing of a toilet.

 

An unprecedented erosion of constitutional freedoms – the right to spit on the street, to blow snot rockets, to pick, roll and flick bogeys to name but a few – is taking place while the lily-livered establishment are betraying their electorate and pandering to the face mask lobby.

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed,. 8.7, III, 11 p. 448

There are at least two philosophers in the library. Robert is the only French philosopher in the library. Therefore, there is a philosopher in the library who is not French. (Px: x is a philosopher; Lx: x is in the library; Fx: x is French; r: r is Robert)

1.     (∃x)(∃y)(Px • Lx • Py • Ly • x ≠ y)

2.     Pr • Fr • Lr • (x)[(Px • Fx • Lx) ⊃ x = r]

∴ (∃x)(Px • Lx • ~ Fx)

3.     ~ (∃x)(Px • Lx • ~ Fx)

4.     (x)~ (Px • Lx • ~ Fx)

5.     (x)[~ (Px • Lx) v Fx]

6.     (x)[( Px • Lx) ⊃ Fx]

7.     (∃y)(Pm • Lm • Py • Ly • m ≠ y)

8.     Pm • Lm • Pq • Lq • m ≠ q

9.     (Pm • Lm) ⊃ Fm

10. Pm • Lm

11. Fm

12. (x)[(Px • Fx • Lx) ⊃ x = r] • Pr • Fr • Lr

13. (x)[(Px • Fx • Lx) ⊃ x = r]

14. (Pm • Fm • Lm) ⊃ m = r

15. Pm • Lm • Fm

16. Pm • Fm • Lm

17. m = r

18. (Pq • Fq • Lq) ⊃ q = r

19. (Pq • Lq) ⊃ Fq

20. Pq • Lq • Pm • Lm • m ≠ q

21. Pq • Lq

22. Fq

23. Pq • Lq • Fq

24. Pq • Fq • Lq

25. q = r

26. r = q

27. m = q

28. ≠ q • Pq • Lq • Pm • Lm

29. ≠ q

30. ≠ q • m = q

31. ~ ~ (∃x)(Px • Lx • ~ Fx)

32. (∃x)(Px • Lx • ~ Fx)

 

 

 

AIP

3 QC

4 DM

5 Impl

1 EI

7 EI

6 UI

8 Simp

9,10 MP

2 Com

12 Simp

13 UI

10,11 Conj

15 Com

14,16 MP

13 UI

6 UI

8 Com

20 Simp

19,21 MP

21,22 Conj

23 Com

18,24 MP

25 Com

17,26 Id

20 Com

28 Simp

27, 29 Conj

3-30 IP

31 DN

Thursday, 11 March 2021

Crime novel, fingers and napkins, gender and sex

For all its genetic promiscuity, a pre-symptomatic killer virus leaves no fingerprints of the spreader on the victim, nor is it easy to prove the spreader’s intent. Do I sense an opportunity for a crime novel writer there?

In these straitened times, let us make a case again for fingers in preference to napkins in post-prandial chops maintenance, the chief argument being the amount of food that can be salvaged annually by deft reintroduction into the mouth via said fingers as opposed to food irretrievably lost in the folds of a napkin.

 

Gender and sex must not be confused – gender is the difference between goose and gander while sex is what the two have in common.

 

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed,. 8.7, III, 9 p. 448

The highest mountain is in Tibet. Therefore, there is a mountain in Tibet that is higher than any mountain not in Tibet. (Mx: x is a mountain; Hxy: x is higher than y; Tx: x is in Tibet)

1.     (∃x){Mx • (y)[(My • y ≠ x) ⊃ Hxy] • Tx}

∴ (∃x){Mx • Tx • (y)[(My • ~ Ty⊃ Hxy]}

2.     (∃x){Mx • Tx • (y)[(My • ~ Ty⊃ Hxy]}

3.     (x) ~ {Mx • Tx • (y)[(My • ~ Ty⊃ Hxy]}

4.     (x){~ (Mx • Tx) v ~ (y)[(My • ~ Ty⊃ Hxy]}

5.     Mm • (y)[(My • y ≠ m) ⊃ Hmy] • Tm

6.     Mm • Tm • (y)[(My • y ≠ m) ⊃ Hmy]

7.     Mm • Tm

8.     ~ (Mm • Tm) v ~ (y)[(My • ~ Ty⊃ Hmy]

9.     ~ (y)[(My • ~ Ty⊃ Hmy]

10. (∃y) ~ [(My • ~ Ty⊃ Hmy]

11. (∃y) ~ [~ (My • ~ Ty) v Hmy]

12. (∃y)[(My • ~ Ty• ~ Hmy]

13. Mr • ~ Tr • ~ Hmr

14. Tm • Mm

15. Tm

16. ~ Tr • Mr • ~ Hmr

17. ~ Tr

18. Tm • ~ Tr

19. ≠ r

20. (y)[(My • y ≠ m) ⊃ Hmy] • Mm • Tm

21. (y)[(My • y ≠ m) ⊃ Hmy]

22. (Mr • r ≠ m) ⊃ Hmr

23. ~ Hmr  ~ Tr • Mr

24. ~ Hmr

25. ~ (Mr • r ≠ m)

26. ~ Mr v r = m

27. Mr

28. r = m

29. m = r

30. ≠ r • m = r

31. ~ ~ (∃x){Mx • Tx • (y)[(My • ~ Ty⊃ Hxy]}

32. (∃x){Mx • Tx • (y)[(My • ~ Ty⊃ Hxy]}

 

 

AIP

2 QC

3 DM

1 UI

5 Com

6 Simp

4 UI

7,8 DS

9 QC

10 Impl

11 DM

12 EI

7 Com

14 Simp

13 Com

16 Simp

15,17 Conj

18 Id

6 Com

20 Simp

21 UI

16 Com

23 Simp

22,24 MT

25 DM

13 Simp

26,27 DS

28 Id

28,29 Conj

2-30 IP

31 DN