Thursday, 29 October 2020

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed., 8.6, III, 9, p.436

Translate and derive the conclusion.

If anything is missing, then some person stole it. If anything is damaged, then some person broke it. Something is either missing or damaged. Therefore, some person either stole something or broke something. (Mx: x is missing; Px: x is a person; Sxy: x stole y; Dx: x is damaged; Bxy: x broke y)

 

1.     (x)[Mx ⊃ (∃y)(Py • Syx)]

2.     (x)[Dx ⊃ (∃y)(Py • Byx)]

3.     (∃x)(Mx v Dx)

∴ (∃y)[Py • (x)(Syx v Byx)]

4.     Mm v Dm

5.     Mm ⊃ (∃y)(Py • Sym)

6.     Dm ⊃ (∃y)(Py • Bym)

7.     [Mm ⊃ (∃y)(Py • Sym)] • [Dm ⊃ (∃y)(Py • Bym)]

8.     (∃y)(Py • Sym) v (∃y)(Py • Bym)

9.     (∃y)[Py • (x)(Syx v Byx)]

10. (y)[Py ⊃ (x)(~ Syx • ~ Byx)]

11. Py

12. Py ⊃ (x)(~ Syx • ~ Byx)

13. (x)(~ Syx • ~ Byx)

14. ~ Sym • ~ Bym

15. ~ Sym

16. Py ⊃ ~ Sym

17. (y)(Py ⊃ ~ Sym)

18. ~ (∃y)(Py • Sym)

19. ~ Mm

20. Dm

21. (∃y)(Py • Bym)

22. Pr • Brm

23. Pr ⊃ (x)(~ Srx • ~ Brx)

24. Pr

25. (x)(~ Srx • ~ Brx)

26. ~ Srm • ~ Brm

27. ~ Brm • ~ Srm

28. ~ Brm

29. Brm • Pr

30. Brm

31. Brm • ~ Brm

32. ~ ~ (∃y)[Py • (x)(Syx v Byx)]

33. (∃y)[Py • (x)(Syx v Byx)]

 

 

 

 

3 EI

1 UI

2 UI

5,6 Conj

4,7 CD

AIP

9 CQ

ACP

10 UI

11,12 MP

13 UI

14 Simp

11-15 CP

16 UG

17 CQ

5,18 MT

4,19 DS

6,20 MP

21 EI

10 UI

22 Simp

23.24 MP

25 UI

26 Com

27 Simp

22 Com

29 Simp

28,30 Conj

9-31 IP

32 DN

No comments:

Post a Comment