Friday, 2 October 2020

A Concise Introduction to Logic, Patrick J. Hurley, Wardsworth, 2006, 9th ed., 8.6, III, 3, p. 436

Translate then derive the conclusion.

A horse is an animal. Therefore, whoever owns a horse owns an animal. (Hx: x is a horse; Ax: x is an animal; Oxy: x owns y)

 

The difficulty here is to translate the conclusion correctly. Before we do that, it helps to paraphrase it:

 

Therefore, anyone who owns a horse owns an animal.

Therefore, if someone owns a horse, then he owns an animal.

 

or, less elegantly but, as is almost always the case, more helpfully:

 

Therefore, if for any person there is a horse that he owns, then there is an animal that he owns.

 

The last translation in particular gives us a hint as to how to translate it into formal logic. Only ‘he’ is anaphoric – which will make the overall sentence structure a conditional – not the ‘horse’. This is not a donkey type sentence. Hence, two existential quantifiers – one for the antecedent, one for the consequent of the conditional.


1.     (x)(Hx ⊃ Ax)

∴ (z)[(∃x)(Hx • Ozx)  (∃y)(Ay • Ozy)]

2.     (z)[(∃x)(Hx • Ozx)  (∃y)(Ay • Ozy)]

3.     (z)[~ (∃x)(Hx • Ozx) v (∃y)(Ay • Ozy)]

4.     (z)[(x)(Hx ⊃ ~ Ozx) v (∃y)(Ay • Ozy)]

5.     (∃z) ~ [(x)(Hx ⊃ ~ Ozx) v (∃y)(Ay • Ozy)]

6.     (∃z)[~ (x)(Hx ⊃ ~ Ozx) • ~ (∃y)(Ay • Ozy)]

7.     (∃z)[(∃x)~ (Hx ⊃ ~ Ozx) • ~ (∃y)(Ay • Ozy)]

8.     (∃z)[(∃x)~ (Hx ⊃ ~ Ozx) • (y)~ (Ay • Ozy)]

9.     (∃z)[(∃x)~ (~ Hx v ~ Ozx) • (y)~ (Ay • Ozy)]

10. (∃z)[(∃x)(Hx  Ozx) • (y)(~ Ay v ~ Ozy)]

11. (∃x)(Hx  Omx) • (y)(~ Ay v ~ Omy)

12. (∃x)(Hx  Omx)

13. Hn • Omn

14. Hn ⊃ An

15. H

16. An

17. (y)(~ Ay v ~ Omy)  (∃x)(Hx  Omx)

18. (y)(~ Ay v ~ Omy)

19. ~ An v ~ Omn

20. ~ Omn

21. Omn • Hn

22. Omn

23. Omn • ~ Omn

24. ~ ~ (z)[(∃x)(Hx • Ozx)  (∃y)(Ay • Ozy)]

25. (z)[(∃x)(Hx • Ozx)  (∃y)(Ay • Ozy)]

 

 

AIP

2 Impl

3 CQ

4 CQ

5 DM

6 CQ

7 CQ

8 Impl

9 DM

10 EI

11 Simp

12 EI

1 UI

13 Simp

14,15 MP

11 Com

17 Simp

18 UI

16,19 DS

13 Com

21 Simp

20-23 Conj

2-23 IP

24 DN

No comments:

Post a Comment