Thursday, 29 October 2020

Face masks

Why wear a face mask if I am not spreading and I don’t care if I catch it? To cover an ugly face.

The bright side of wearing a face mask? You can yawn without covering your mouth with your hand.

 

Face mask – the answer to imbecilic gawping

 

Face mask – a feeling of a certain schadenfreude when passing dental practices selling ‘perfect smile’, ‘beautiful smile’, ‘fresh smile’ and so on.

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed., 8.6, III, 9, p.436

Translate and derive the conclusion.

If anything is missing, then some person stole it. If anything is damaged, then some person broke it. Something is either missing or damaged. Therefore, some person either stole something or broke something. (Mx: x is missing; Px: x is a person; Sxy: x stole y; Dx: x is damaged; Bxy: x broke y)

 

1.     (x)[Mx ⊃ (∃y)(Py • Syx)]

2.     (x)[Dx ⊃ (∃y)(Py • Byx)]

3.     (∃x)(Mx v Dx)

∴ (∃y)[Py • (x)(Syx v Byx)]

4.     Mm v Dm

5.     Mm ⊃ (∃y)(Py • Sym)

6.     Dm ⊃ (∃y)(Py • Bym)

7.     [Mm ⊃ (∃y)(Py • Sym)] • [Dm ⊃ (∃y)(Py • Bym)]

8.     (∃y)(Py • Sym) v (∃y)(Py • Bym)

9.     (∃y)[Py • (x)(Syx v Byx)]

10. (y)[Py ⊃ (x)(~ Syx • ~ Byx)]

11. Py

12. Py ⊃ (x)(~ Syx • ~ Byx)

13. (x)(~ Syx • ~ Byx)

14. ~ Sym • ~ Bym

15. ~ Sym

16. Py ⊃ ~ Sym

17. (y)(Py ⊃ ~ Sym)

18. ~ (∃y)(Py • Sym)

19. ~ Mm

20. Dm

21. (∃y)(Py • Bym)

22. Pr • Brm

23. Pr ⊃ (x)(~ Srx • ~ Brx)

24. Pr

25. (x)(~ Srx • ~ Brx)

26. ~ Srm • ~ Brm

27. ~ Brm • ~ Srm

28. ~ Brm

29. Brm • Pr

30. Brm

31. Brm • ~ Brm

32. ~ ~ (∃y)[Py • (x)(Syx v Byx)]

33. (∃y)[Py • (x)(Syx v Byx)]

 

 

 

 

3 EI

1 UI

2 UI

5,6 Conj

4,7 CD

AIP

9 CQ

ACP

10 UI

11,12 MP

13 UI

14 Simp

11-15 CP

16 UG

17 CQ

5,18 MT

4,19 DS

6,20 MP

21 EI

10 UI

22 Simp

23.24 MP

25 UI

26 Com

27 Simp

22 Com

29 Simp

28,30 Conj

9-31 IP

32 DN

Friday, 23 October 2020

Hair in food, body language, early riser

I always hold back my compliments on the food I’m being force-fed in other people’s homes until I have had the last bite of the first treat, and always start by saying: “It was good. I found no hair in it.” This, I find, stops more food being shoved onto my plate.

Real fame comes when people start quoting your body language.

 

I’ve decided to tell the truth when I’m asked where my strengths lie. I say I’m an early riser.

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed., 8.6, III, 8, p. 436

Translate and derive the conclusion.

If there are any policemen, then if there are any robbers, then they will arrest them. If any robbers are arrested by policemen, they will go to jail. There are some policemen, and Macky is a robber. Therefore, Macky will go to jail. (Px: x is a policeman; Rx: x is a robber; Axy: x will arrest y; Jx: x will go to jail)

The first premise (x)[Px ⊃ (y)(Ry ⊃ Axy)] simplifies to (x)(y)[(Px • Ry) ⊃ Axy], while the second premise (x){[Px ⊃ (y)[R ⊃ (Axy ⊃ Jy)]} simplifies to (x)(y)[(Px • Ry • Axy) ⊃ Jy].

 

1.     (x)(y)[(Px • Ry) ⊃ Axy]

2.     (x)(y)[(Px • Ry • Axy) ⊃ Jy]

3.     (∃x)Px • Rm

∴ Jm

4.     ~ Jm

5.     (∃x)Px

6.     Pr

7.     (y)[(Pr • Ry • Ary) ⊃ Jy]

8.     (Pr • Rm • Arm) ⊃ Jm

9.     ~ (Pr • Rm • Arm)

10. ~ Pr  v ~ Rm v ~ Arm

11. ~ Rm v ~ Arm

12. Rm • (∃x)Px

13. Rm

14. ~ Arm

15. (y)[(Pr • Ry) ⊃ Ary]

16. (Pr • Rm) ⊃ Arm

17. ~ (Pr • Rm)

18. ~ Pr v ~ Rm

19. ~ Rm

20. ~ Rm • Rm

21. ~ ~ Jm

22. Jm

 

 

 

 

AIP

3 Simp

5 EI

2 UI

7 UI

4,8 MT

9 DM

6,10 DS

3 Com

12 Simp

11,13 DS

1 UI

15 UI

14,16 MT

17 DM

6,18 DS

13,19 Conj

4-20 IP

21 DN

 

Thursday, 15 October 2020

Good, cheap, fast, year in the office, shower

Good, cheap and fast – three words that mean nothing together; premium quality, reasonable price, short turnaround times – three expressions that together mean nothing; it’ll be done by an expert, it’ll be an investment, it’ll be done on a timely basis – three sentences together that nothing means, promised respectively by a builder, undertaker, and a Big Four accountancy firm.

A year in the office – preparing for the winter holiday in Zanzibar, winter holiday in Zanzibar, sick leave, business trip, skiing holiday in the Dolomites, planning the May Day holiday in Spain, business trip, May Day holiday in Spain, planning the summer holiday in Cape Verde, professional training, summer holiday in Cape Verde, sick leave, integration weekend, planning an autumn weekend break in Amsterdam, sick leave, weekend break in Amsterdam, planning the Christmas holiday at home with amazon, office party, Christmas holiday –  free time to make plans for the winter holiday

 

Shower – a means to an end, bath – an end in itself.

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed., 8.6, III, 6, p.436

Translate and then derive the conclusion.

Dr Rogers can cure any person who cannot cure himself. Dr Rogers is a person. Therefore, Dr Rogers can cure himself. (Px: x is a person; Cxy: x can cure y)

 

1.     (x)[(Px • ~ Cxx) ⊃ Crx]

2.     Pr

∴ Crr

3.     ~ Crr

4.     (Pr • ~ Crr) ⊃ Crr

5.     ~ (Pr • ~ Crr)

6.     ~ Pr v Crr

7.     Crr

8.     Crr • ~ Crr

9.     ~ ~ Crr

10. Crr

 

 

 

AIP

1 UI

3,4 MT

5 DM

2,6 DS

3 Conj

3-8 IP

9 DN

Thursday, 8 October 2020

Atheists, morality, virtue, vice

Atheists express rage against God although in their view He doesn’t exist. – C. S. Lewis

Retort

 

Atheists express rage at people who say God exists and bemusement at the idea that He does.

 

In Christianity, neither morality nor religion come into contact with reality at any point. – Friedrich Nietzsche

 

Corollary 1

 

If they did, it would be a race to the bottom. 

 

Corollary 2

 

That’s because religion and morality are aspiration while reality is perspiration. 

 

Without virtue there can be no liberty. – Benjamin Rush

 

Retort

 

Nor virtue without liberty. In fact, neither virtue nor liberty are possible without vice.

 

A Concise Introduction to Logic, Patrick J. Hurley, Wadsworth, 2006, 9th ed., 8.6, III, 5, p.436

Translate, then derive the conclusion.

If there are any honest politicians, then if all the ballots are counted, they will be reelected. Some honest politicians will not be reelected. Therefore, some ballots will not be counted. (Hx: x is honest; Px: x is a politician; Bx: x is a ballot; Cx: x is counted; Rx: x is reelected) 


For the first premise, start with:

 

(x){(Px • Hx) ⊃ [(y)(By ⊃ Cy) ⊃ Rx]}

 

then use the rule of exportation to get:

 

(x){[Px • Hx • (y)(By ⊃ Cy)] ⊃ Rx}

 

and pre-nex notation:

 

(x)(y){[Px • Hx • (By ⊃ Cy)] ⊃ Rx}

 

1.     (x)(y){[Px • Hx • (By ⊃ Cy)] ⊃ Rx}

2.     (∃x)(Hx • Px • ~R)

∴ (∃x)(Bx • ~ Cx)

3.     Hm • Pm • ~ Rm

4.     (y){[Pm • Hm • (By ⊃ Cy)] ⊃ Rm}

5.     [Pm • Hm • (Bm ⊃ Cm)] ⊃ Rm

6.     ~ Rm • Hm • Pm

7.     ~ Rm

8.     [Pm • Hm • (Bm ⊃ Cm)]

9.     ~ (Pm • Hm) v ~ (Bm ⊃ Cm)]

10. Pm • Hm • ~ Rm

11. Pm • Hm

12. (Bm ⊃ Cm)

13. ~ (~ Bm v Cm)

14. Bm • ~ Cm

15. (∃x)(Bx • ~ Cx)

 

 

 

2 EI

1 UI

4 UI

3 Com

6 Simp

5,7 MT

8 DM

3 Com

10 Simp

9,11 DS

12 Impl

13 DM

14 EG