Demonstrate that the following is a tautology:├ ¬ (z)[(∃y)(Fy • Hzy) ⊃(∃y)(Gy • Hzy)] ⊃¬(x)(Fx ⊃Gx). We proceed by showing that we can derive the implication without the use of any premises other than what we assume.
- ├ ¬ (z)[(∃y)(Fy • Hzy) ⊃(∃y)(Gy • Hzy)] ⊃¬(x)(Fx ⊃Gx)
- (x)(Fx ⊃Gx) ⊃(z)[(∃y)(Fy • Hzy) ⊃(∃y)(Gy • Hzy)] ......... 1Contrapositive
- * (x)(Fx ⊃Gx) ......... ACP
- * * (∃y)(Fy • Hzy) ......... ACP
- * * Fa C Hza ......... 4EI y/a
- * * Fa ......... 5Simp.
- * * Fa ⊃Ga ......... 3UI x/a
- * * Ga ......... 6,7MP
- * * Hza ......... 5Simp.
- * * Ga • Hza ......... 8,9Conj.
- * * (∃y)(Gy • Hzy) ......... 10EG
- * (∃y)(Fy • Hzy) ⊃(∃y)(Gy • Hzy) ......... 4-11CP
- (x)(Fx ⊃Gx) ⊃(z)[(∃y)(Fy • Hzy) ⊃(∃y)(Gy • Hzy)] ......... 2-12CP
- ¬ (z)[(∃y)(Fy • Hzy) ⊃(∃y)(Gy • Hzy)] ⊃¬(x)(Fx ⊃Gx) ......... 13Contrap.
No comments:
Post a Comment