The task: give a natural deduction proof for the following tautology, ├ (x)(Fx ⊃Gx) ⊃(y)[(∃z)(Fz • Hyz) ⊃(∃z)(Gz • Hyz)].
├ (x)(Fx ⊃Gx) ⊃(y)[(∃z)(Fz • Hyz) ⊃(∃z)(Gz • Hyz)]
- * (x)(Fx ⊃Gx) ......... ACP
- * * (∃z)(Fz • Hyz) ......... ACP
- * * Fa • Hya ......... 2EI z/a
- * * Fa ⊃Ga ......... 1UI x/a
- * * Fa ......... 3Simp.
- * * Ga ......... 5,4MP
- * * Hya ......... 3Simp.
- * * Ga • Hya ......... 6,7Conj.
- * * (∃z)(Gz • Hyz)] ......... 8EG
- * (∃z)(Fz • Hyz) ⊃(∃z)(Gz • Hyz) ......... 2-9CP
- (x)(Fx ⊃Gx) ⊃(y)[(∃z)(Fz • Hyz) ⊃(∃z)(Gz • Hyz)] ......... 1-10CP
No comments:
Post a Comment