Thursday, 12 August 2010

Deduction, Daniel Bonevac, Blackwell Publishing, 2nd Edition, 2003, chpt. 8.3, problem 15

Show that (∃x)[Gx • (Fx ⊃Ha)] ≡ [(∃x)(Gx • Fx) ⊃Ha] is a consequence of (∃x)(y)(y = x ≡ Gy).


  1. (∃x)(y)(y = x ≡ Gy)
  2. ∴(∃x)[Gx • (Fx ⊃Ha)] ≡ [(∃x)(Gx • Fx) ⊃Ha]
  3. * (∃x)[Gx • (Fx ⊃Ha)] ... ACP
  4. * * (∃x)(Gx • Fx) ... ACP
  5. * * Gm • Fm ... 4EI x/m
  6. * * (y)(y = h ≡ Gy) ... 1EI x/h
  7. * * m = h ≡ Gm ... 6UI y/m
  8. * * (m = h ⊃Gm) •(Gm ⊃m = h) ... 7BE
  9. * * Gm ... 5Simp.
  10. * * Gm ⊃m = h ... 8Simp.
  11. * * m = h ... 9,10MP
  12. * * Gr • (Fr ⊃Ha) ... 3EI x/r
  13. * * r = h ≡ Gr ... 6UI y/r
  14. * * (r = h ⊃Gr) •(Gr ⊃r = h) ... 13BE
  15. * * Gr ... 12Simp.
  16. * * Gr ⊃r = h ... 14Simp.
  17. * * r = h ... 15,16MP
  18. * * h = m ... 11Id.
  19. * * r = m ... 17,18Id.
  20. * * Fr ⊃Ha ... 12Simp.
  21. * * Fm ... 5Simp.
  22. * * Fr ... 19,21Id.
  23. * * Ha ... 22,20MP
  24. * (∃x)(Gx • Fx) ⊃Ha ... 4-23CP
  25. [(∃x)[Gx • (Fx ⊃Ha)] ⊃[(∃x)(Gx • Fx) ⊃Ha] ... 3-24CP
  26. * (∃x)(Gx • Fx) ⊃Ha ... ACP
  27. * * ¬ (∃x)[Gx • (Fx ⊃Ha) ... AIP
  28. * * (x)[Gx ⊃(Fx • ¬ Ha) ... 27QC
  29. * * (y)(y = m ≡ Gy) ... 1EI x/m
  30. * * m = m ≡ Gm ... 29UI y/m
  31. * * (m = m ⊃Gm) •(Gm ⊃m = m) ... 30BE
  32. * * m = m ⊃Gm ... 31Simp.
  33. * * m = m ... Id.
  34. * * Gm ... 33,32MP
  35. * * Gm ⊃(Fm • ¬ Ha) ... 28UI x/m
  36. * * Fm • ¬ Ha ... 34,35MP
  37. * * ¬ Ha ... 36Simp.
  38. * * Fm ... 36Simp.
  39. * * Gm • Fm ... 34,38Conj.
  40. * * (∃x)(Gx • Fx) ... 39EG
  41. * * Ha ... 26,40MP
  42. * * Ha • ¬ Ha ... 41,37Conj.
  43. * ¬ ¬ (∃x)[Gx • (Fx ⊃Ha) ... 27-42IP
  44. * (∃x)[Gx • (Fx ⊃Ha) ... 43DN
  45. [(∃x)(Gx • Fx) ⊃Ha] ⊃[(∃x)[Gx • (Fx ⊃Ha)] ... 26-44CP


  46. [(∃x)[Gx • (Fx ⊃Ha)] ⊃[(∃x)(Gx • Fx) ⊃Ha] • [(∃x)(Gx • Fx) ⊃Ha] ⊃[(∃x)[Gx • (Fx ⊃Ha)] ... 25,45Conj.


  47. (∃x)[Gx • (Fx ⊃Ha)] ≡ [(∃x)(Gx • Fx) ⊃Ha] ... 46BE

No comments:

Post a Comment