Show that (∃x)[Gx • (Fx ⊃Ha)] ≡ [(∃x)(Gx • Fx) ⊃Ha] is a consequence of (∃x)(y)(y = x ≡ Gy).
- (∃x)(y)(y = x ≡ Gy)
- ∴(∃x)[Gx • (Fx ⊃Ha)] ≡ [(∃x)(Gx • Fx) ⊃Ha]
- * (∃x)[Gx • (Fx ⊃Ha)] ... ACP
- * * (∃x)(Gx • Fx) ... ACP
- * * Gm • Fm ... 4EI x/m
- * * (y)(y = h ≡ Gy) ... 1EI x/h
- * * m = h ≡ Gm ... 6UI y/m
- * * (m = h ⊃Gm) •(Gm ⊃m = h) ... 7BE
- * * Gm ... 5Simp.
- * * Gm ⊃m = h ... 8Simp.
- * * m = h ... 9,10MP
- * * Gr • (Fr ⊃Ha) ... 3EI x/r
- * * r = h ≡ Gr ... 6UI y/r
- * * (r = h ⊃Gr) •(Gr ⊃r = h) ... 13BE
- * * Gr ... 12Simp.
- * * Gr ⊃r = h ... 14Simp.
- * * r = h ... 15,16MP
- * * h = m ... 11Id.
- * * r = m ... 17,18Id.
- * * Fr ⊃Ha ... 12Simp.
- * * Fm ... 5Simp.
- * * Fr ... 19,21Id.
- * * Ha ... 22,20MP
- * (∃x)(Gx • Fx) ⊃Ha ... 4-23CP
- [(∃x)[Gx • (Fx ⊃Ha)] ⊃[(∃x)(Gx • Fx) ⊃Ha] ... 3-24CP
- * (∃x)(Gx • Fx) ⊃Ha ... ACP
- * * ¬ (∃x)[Gx • (Fx ⊃Ha) ... AIP
- * * (x)[Gx ⊃(Fx • ¬ Ha) ... 27QC
- * * (y)(y = m ≡ Gy) ... 1EI x/m
- * * m = m ≡ Gm ... 29UI y/m
- * * (m = m ⊃Gm) •(Gm ⊃m = m) ... 30BE
- * * m = m ⊃Gm ... 31Simp.
- * * m = m ... Id.
- * * Gm ... 33,32MP
- * * Gm ⊃(Fm • ¬ Ha) ... 28UI x/m
- * * Fm • ¬ Ha ... 34,35MP
- * * ¬ Ha ... 36Simp.
- * * Fm ... 36Simp.
- * * Gm • Fm ... 34,38Conj.
- * * (∃x)(Gx • Fx) ... 39EG
- * * Ha ... 26,40MP
- * * Ha • ¬ Ha ... 41,37Conj.
- * ¬ ¬ (∃x)[Gx • (Fx ⊃Ha) ... 27-42IP
- * (∃x)[Gx • (Fx ⊃Ha) ... 43DN
- [(∃x)(Gx • Fx) ⊃Ha] ⊃[(∃x)[Gx • (Fx ⊃Ha)] ... 26-44CP
- [(∃x)[Gx • (Fx ⊃Ha)] ⊃[(∃x)(Gx • Fx) ⊃Ha] • [(∃x)(Gx • Fx) ⊃Ha] ⊃[(∃x)[Gx • (Fx ⊃Ha)] ... 25,45Conj.
- (∃x)[Gx • (Fx ⊃Ha)] ≡ [(∃x)(Gx • Fx) ⊃Ha] ... 46BE
No comments:
Post a Comment