We are asked to prove a theorem. Since the theorem is an equivalence we have to prove each implication separately and then conjoin them. Proving it left to right is not especially challenging, but proving it in the opposite direction requires that we instantiate (y)(Fy ⊃m = y) twice, first into 'y', then into 'x', so that we could set up Modus Ponens arguments inside the scope of the innermost assumption and derive an identity.
{(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)]
- * (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / ACP
- * (∃x)Fx / 1Simp.
- * Fa / 2EI x/a
- * (x)(y)[(Fx • Fy) ⊃x = y] / 1Simp.
- * (y)[(Fa • Fy) ⊃a = y] / 4UI x/a
- * (Fa • Fy) ⊃a = y / 5UI y/y
- * ¬ (Fa • Fy) ∨a = y / 6MI
- * (¬ Fa ∨¬ Fy) ∨a = y / 7DeM
- * ¬ Fa ∨(¬ Fy ∨a = y) / 8Assoc.
- * ¬ Fy ∨a = y / 3,9DS
- * Fy ⊃a = y / 10MI
- * (y)(Fy ⊃a = y) / 11UG
- * Fa • (y)(Fy ⊃a = y) / 3,12Conj.
- * (∃x)[Fx • (y)(Fy ⊃x = y)] / 13EG
- {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)] / 1-14CP
- * (∃x)[Fx • (y)(Fy ⊃x = y)] / ACP
- * Fm • (y)(Fy ⊃m = y) / 16EI x/m
- * Fm / 17Simp.
- * (y)(Fy ⊃m = y] /17Simp.
- * * Fx • Fy / ACP
- * * Fy / 20Simp.
- * * Fy ⊃m = y / 19UI y/y
- * * m = y / 21,22MP
- * * Fx / 20Simp.
- * * Fx ⊃m = x / 19UI y/x
- * * m = x / 24,25MP
- * * x = m / 26Id
- * * x = y / 23,27Id
- * (Fx • Fy) ⊃x = y / 20-28CP
- * (y)[(Fx • Fy) ⊃x = y] / 29UG
- * (x)(y)[(Fx • Fy) ⊃x = y] / 30UG
- * (∃x)Fx / 18EG
- * (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / 32,31Conj.
- (∃x)[Fx • (y)(Fy ⊃x = y)] ⊃ (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / 16-33CP
- {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)] • (∃x)[Fx • (y)(Fy ⊃x = y)] ⊃ (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / 15,34Conj.
- {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)] / 35BE
No comments:
Post a Comment