Saturday, 13 March 2010

Understanding Symbolic Logic, Virginia Klenk, Pearson Prentice Hall, 2008, 5th edition, Unit 20, Ex. 3.e

We are asked to prove a theorem. Since the theorem is an equivalence we have to prove each implication separately and then conjoin them. Proving it left to right is not especially challenging, but proving it in the opposite direction requires that we instantiate (y)(Fy ⊃m = y) twice, first into 'y', then into 'x', so that we could set up Modus Ponens arguments inside the scope of the innermost assumption and derive an identity.
{(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)]
  1. * (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / ACP
  2. * (∃x)Fx / 1Simp.
  3. * Fa / 2EI x/a
  4. * (x)(y)[(Fx • Fy) ⊃x = y] / 1Simp.
  5. * (y)[(Fa • Fy) ⊃a = y] / 4UI x/a
  6. * (Fa • Fy) ⊃a = y / 5UI y/y
  7. * ¬ (Fa • Fy) ∨a = y / 6MI
  8. * (¬ Fa ∨¬ Fy) ∨a = y / 7DeM
  9. * ¬ Fa ∨(¬ Fy ∨a = y) / 8Assoc.
  10. * ¬ Fy ∨a = y / 3,9DS
  11. * Fy ⊃a = y / 10MI
  12. * (y)(Fy ⊃a = y) / 11UG
  13. * Fa • (y)(Fy ⊃a = y) / 3,12Conj.
  14. * (∃x)[Fx • (y)(Fy ⊃x = y)] / 13EG
  15. {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)] / 1-14CP
  16. * (∃x)[Fx • (y)(Fy ⊃x = y)] / ACP
  17. * Fm • (y)(Fy ⊃m = y) / 16EI x/m
  18. * Fm / 17Simp.
  19. * (y)(Fy ⊃m = y] /17Simp.
  20. * * Fx • Fy / ACP
  21. * * Fy / 20Simp.
  22. * * Fy ⊃m = y / 19UI y/y
  23. * * m = y / 21,22MP
  24. * * Fx / 20Simp.
  25. * * Fx ⊃m = x / 19UI y/x
  26. * * m = x / 24,25MP
  27. * * x = m / 26Id
  28. * * x = y / 23,27Id
  29. * (Fx • Fy) ⊃x = y / 20-28CP
  30. * (y)[(Fx • Fy) ⊃x = y] / 29UG
  31. * (x)(y)[(Fx • Fy) ⊃x = y] / 30UG
  32. * (∃x)Fx / 18EG
  33. * (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / 32,31Conj.
  34. (∃x)[Fx • (y)(Fy ⊃x = y)] ⊃ (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / 16-33CP
  35. {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)] • (∃x)[Fx • (y)(Fy ⊃x = y)] ⊃ (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / 15,34Conj.
  36. {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)] / 35BE

No comments:

Post a Comment