Friday 26 March 2010

Symbolic Logic, Dale Jacquette, Wadsworth, 2001, Chapter 8, Ex. III, problem 11

Prove the theorem. There is more than one way of doing it. If we go past the contradiction on line 16, we can bring in just about any statement, including (x)Fxx, because anything follows from a contradiction.
(x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] ⊃(x)Fxx
  1. * (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / ACP
  2. * * ¬ (x)Fxx / AIP
  3. * * (∃x) ¬ Fxx / 2QC
  4. * * ¬ Faa / 3EI x/a
  5. * * (y)[Fay ≡ (z)(Gaz ≡ Gyz)] / 1UI x/a
  6. * * Faa ≡ (z)(Gaz ≡ Gaz) / 5UI y/a
  7. * * [Faa ⊃(z)(Gaz ≡ Gaz)] • [(z)(Gaz ≡ Gaz) ⊃Faa] / 6BE
  8. * * (z)(Gaz ≡ Gaz) ⊃Faa / 7Simp.
  9. * * ¬ (z)(Gaz ≡ Gaz) / 4,8MT
  10. * * (∃z) ¬ (Gaz ≡ Gaz) / 9QC
  11. * * (∃z) ¬ [(Gaz ⊃ Gaz) • [(Gaz ⊃ Gaz)] / 10BE
  12. * * ¬ [(Gam ⊃ Gam) • [(Gam ⊃ Gam)] / 11EI z/m
  13. * * ¬ (Gam ⊃ Gam) ∨ ¬ [(Gam ⊃ Gam)] / 12DeM
  14. * * ¬ (Gam ⊃ Gam) / 13Tuatology
  15. * * ¬ (¬ Gam ∨ Gam) / 14MI
  16. * * Gam • ¬ Gam / 15DeM
  17. * * Gam / 16Simp.
  18. * * Gam ∨¬ (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / 17Add.
  19. * * ¬ Gam / 16Simp.
  20. * * ¬ (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / 19,18DS
  21. * ¬ (x)Fxx ⊃¬ (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / 2-20IP
  22. * (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] ⊃(x)Fxx / 21Contrap.
  23. * (x)Fxx / 1,22MP
  24. (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] ⊃(x)Fxx / 1-23CP

No comments:

Post a Comment