Prove the theorem. There is more than one way of doing it. If we go past the contradiction on line 16, we can bring in just about any statement, including (x)Fxx, because anything follows from a contradiction.
- * (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / ACP
- * * ¬ (x)Fxx / AIP
- * * (∃x) ¬ Fxx / 2QC
- * * ¬ Faa / 3EI x/a
- * * (y)[Fay ≡ (z)(Gaz ≡ Gyz)] / 1UI x/a
- * * Faa ≡ (z)(Gaz ≡ Gaz) / 5UI y/a
- * * [Faa ⊃(z)(Gaz ≡ Gaz)] • [(z)(Gaz ≡ Gaz) ⊃Faa] / 6BE
- * * (z)(Gaz ≡ Gaz) ⊃Faa / 7Simp.
- * * ¬ (z)(Gaz ≡ Gaz) / 4,8MT
- * * (∃z) ¬ (Gaz ≡ Gaz) / 9QC
- * * (∃z) ¬ [(Gaz ⊃ Gaz) • [(Gaz ⊃ Gaz)] / 10BE
- * * ¬ [(Gam ⊃ Gam) • [(Gam ⊃ Gam)] / 11EI z/m
- * * ¬ (Gam ⊃ Gam) ∨ ¬ [(Gam ⊃ Gam)] / 12DeM
- * * ¬ (Gam ⊃ Gam) / 13Tuatology
- * * ¬ (¬ Gam ∨ Gam) / 14MI
- * * Gam • ¬ Gam / 15DeM
- * * Gam / 16Simp.
- * * Gam ∨¬ (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / 17Add.
- * * ¬ Gam / 16Simp.
- * * ¬ (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / 19,18DS
- * ¬ (x)Fxx ⊃¬ (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] / 2-20IP
- * (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] ⊃(x)Fxx / 21Contrap.
- * (x)Fxx / 1,22MP
- (x)(y)[Fxy ≡ (z)(Gxz ≡ Gyz)] ⊃(x)Fxx / 1-23CP
No comments:
Post a Comment