Sunday, 21 March 2010

Symbolic Logic, Dale Jacquette, Wadsworth, 2001, Chapter 8, Ex. III, problem 9

Show that the following disjunction is a tautology. A disjunction is often easiest to prove by assuming the negation of one of the disjuncts. In this case it is also sensible to write the other disjunct at the bottom of the page and work backwards by simplifying, until we can see what it is that we are aiming to get. Then we make further assumptions: (x)Gx on line 8 and (x)Fx on line 17.

(∃x)(Fx ≡ ¬ Gx) ∨[(∃x) ¬ Fx ≡ (∃x) ¬ Gx]
  1. * ¬ (∃x)(Fx ≡ ¬ Gx) / ACP
  2. * (x) ¬ (Fx ≡ ¬ Gx) / 1QC
  3. * (x) ¬ [(Fx ⊃¬ Gx) • (¬ Gx ⊃Fx)] / 2BE
  4. * ¬ [(Fx ⊃¬ Gx) • (¬ Gx ⊃Fx)] / 3UI x/x
  5. * ¬ (Fx ⊃¬ Gx) ∨¬ (¬ Gx ⊃Fx) / 4DeM
  6. * (Fx ⊃¬ Gx) ⊃(¬ Gx • ¬ x) / 5MI
  7. * (Fx ⊃¬ Gx) ⊃¬ (Gx ∨Fx) / 6DeM
  8. * * (x)Gx / ACP
  9. * * Gx / 8UI x/x
  10. * * Gx ∨Fx / 9Add.
  11. * * ¬ (Fx ⊃¬ Gx) / 10,7MT
  12. * * ¬ (¬ Fx ∨¬ Gx) / 11MI
  13. * * Fx • Gx / 12DeM
  14. * * Fx / 13 Simp.
  15. * * (x)Fx / 14UG
  16. * (x)Gx ⊃(x)Fx / 8-15CP
  17. * * (x)Fx /ACP
  18. * * Fx / 17UI x/x
  19. * * Fx ∨Gx / 18Add.
  20. * * Gx ∨Fx / 19Comm.
  21. * * ¬ (Fx ⊃¬ Gx) / 20,7MT
  22. * * ¬ (¬ Fx ∨¬ Gx) / 21MI
  23. * * Fx • Gx / 22DeM
  24. * * Gx / 23Simp.
  25. * * (x)Gx / 24UG
  26. * (x)Fx ⊃(x)Gx / 17-25CP
  27. * ¬ (x)Fx ⊃¬ (x)Gx / 16Contrap.
  28. * (∃) ¬ Fx ⊃(∃x) ¬ Gx / 27QC
  29. * ¬ (x)Gx ⊃¬ (x)Fx / 26 Contrap.
  30. * (∃) ¬ Gx ⊃(∃x) ¬ Fx / 29QC
  31. * [(∃) ¬ Fx ⊃(∃x) ¬ Gx] • [ (∃) ¬ Gx ⊃(∃x) ¬ Fx] / 28,30Contrap.
  32. * (∃x) ¬ Fx ≡ (∃x) ¬ Gx / 31BE
  33. ¬ (∃x)(Fx ≡ ¬ Gx) ⊃[(∃x) ¬ Fx ≡ (∃x) ¬ Gx] / 1-32CP
  34. ¬ ¬ (∃x)(Fx ≡ ¬ Gx) ∨[(∃x) ¬ Fx ≡ (∃x) ¬ Gx] / 33MI
  35. (∃x)(Fx ≡ ¬ Gx) ∨[(∃x) ¬ Fx ≡ (∃x) ¬ Gx] / 34DN

No comments:

Post a Comment