Show that the following disjunction is a tautology. A disjunction is often easiest to prove by assuming the negation of one of the disjuncts. In this case it is also sensible to write the other disjunct at the bottom of the page and work backwards by simplifying, until we can see what it is that we are aiming to get. Then we make further assumptions: (x)Gx on line 8 and (x)Fx on line 17.
(∃x)(Fx ≡ ¬ Gx) ∨[(∃x) ¬ Fx ≡ (∃x) ¬ Gx]
- * ¬ (∃x)(Fx ≡ ¬ Gx) / ACP
- * (x) ¬ (Fx ≡ ¬ Gx) / 1QC
- * (x) ¬ [(Fx ⊃¬ Gx) • (¬ Gx ⊃Fx)] / 2BE
- * ¬ [(Fx ⊃¬ Gx) • (¬ Gx ⊃Fx)] / 3UI x/x
- * ¬ (Fx ⊃¬ Gx) ∨¬ (¬ Gx ⊃Fx) / 4DeM
- * (Fx ⊃¬ Gx) ⊃(¬ Gx • ¬ x) / 5MI
- * (Fx ⊃¬ Gx) ⊃¬ (Gx ∨Fx) / 6DeM
- * * (x)Gx / ACP
- * * Gx / 8UI x/x
- * * Gx ∨Fx / 9Add.
- * * ¬ (Fx ⊃¬ Gx) / 10,7MT
- * * ¬ (¬ Fx ∨¬ Gx) / 11MI
- * * Fx • Gx / 12DeM
- * * Fx / 13 Simp.
- * * (x)Fx / 14UG
- * (x)Gx ⊃(x)Fx / 8-15CP
- * * (x)Fx /ACP
- * * Fx / 17UI x/x
- * * Fx ∨Gx / 18Add.
- * * Gx ∨Fx / 19Comm.
- * * ¬ (Fx ⊃¬ Gx) / 20,7MT
- * * ¬ (¬ Fx ∨¬ Gx) / 21MI
- * * Fx • Gx / 22DeM
- * * Gx / 23Simp.
- * * (x)Gx / 24UG
- * (x)Fx ⊃(x)Gx / 17-25CP
- * ¬ (x)Fx ⊃¬ (x)Gx / 16Contrap.
- * (∃) ¬ Fx ⊃(∃x) ¬ Gx / 27QC
- * ¬ (x)Gx ⊃¬ (x)Fx / 26 Contrap.
- * (∃) ¬ Gx ⊃(∃x) ¬ Fx / 29QC
- * [(∃) ¬ Fx ⊃(∃x) ¬ Gx] • [ (∃) ¬ Gx ⊃(∃x) ¬ Fx] / 28,30Contrap.
- * (∃x) ¬ Fx ≡ (∃x) ¬ Gx / 31BE
- ¬ (∃x)(Fx ≡ ¬ Gx) ⊃[(∃x) ¬ Fx ≡ (∃x) ¬ Gx] / 1-32CP
- ¬ ¬ (∃x)(Fx ≡ ¬ Gx) ∨[(∃x) ¬ Fx ≡ (∃x) ¬ Gx] / 33MI
- (∃x)(Fx ≡ ¬ Gx) ∨[(∃x) ¬ Fx ≡ (∃x) ¬ Gx] / 34DN
No comments:
Post a Comment