Tuesday, 15 September 2020

Understanding Symbolic Logic, Virignia Klenk, Pearson Prentice Hall, 5th ed., 2008, Unit 8: 7(m), p. 173

The trick to proving the conclusion in this argument is to spot that M, on line 3, can be exported to make the consequent of a conditional (which itself is a conditional with M as the antecedent and N as the consequent). This one step allows us to set up a hypothetical syllogism with the proposition on line 4. From then on, it's child's play. If we take another path, we're in for a lot of hard work.

1.     G ⊃ (H • I)

2.     J ⊃ (H • K)

3.     [(L ⊃ ~ G) • M] ⊃ N

4.     (M ⊃ N) ⊃ (L • J)

∴ I v K

5.     (L ⊃ ~ G) ⊃ (M ⊃ N)

6.     (L ⊃ ~ G) ⊃ (L • J)

7.     ~ (L ⊃ ~ G) v (L • J)

8.     ~ (~ L v ~ G) v (L • J)

9.     (L • G) v (L • J)

10. [(L • G) v L] • [(L • G) v J]

11. (L v L) • (G v L) • (L v J) • (G v J)

12. (G v J) • (L v L) • (G v L) • (L v J)

13. G v J

14. [G ⊃ (H • I)] • [J ⊃ (H • K)]

15. (H • I) v (H • K)

16. [(H • I) v H] • [(H • I) v K]

17. (H v H) • (I v H) • (H v K) • (I v K)

18. (I v K) • (H v H) • (I v H) • (H v K)

19. I v K

 

 

 

 

 

3 Exp

4,5 HS

6 Impl

7 Impl

8 DM

9 Dist

10 Dist

11 Com

12 Simp

1,2 Conj

13,14 CD

15 Dist

16 Dist

17 Com

18 Simp


No comments:

Post a Comment