Wednesday, 9 November 2011

Deductive Logic, Warren Goldfarb, Hackett Publishing, 2003, Part IV, Exercise 5(b), p. 285

The task: to show that the premises imply the conclusion.
  1. (x)Gxx
  2. (x)(y)[¬ (x = y) ⊃ (∃z)(Gxz • Gzy)]
  3. ∴(x)(y)(∃z)(Gxz • Gzy)
  4. * ¬ (x)(y)(∃z)(Gxz • Gzy) ......... IP
  5. * (∃x)¬(y)(∃z)(Gxz • Gzy) ......... 4 QC
  6. * (∃x)(∃y)¬(∃z)(Gxz • Gzy) ......... 5 QC
  7. * (∃x)(∃y)(z)¬(Gxz • Gzy) ......... 6 QC
  8. * (∃x)(∃y)(z)(¬Gxz ¬ Gzy) ......... 7 DeM.
  9. * (∃x)(∃y)(z)(Gxz ⊃¬ Gzy) ......... 8 MI
  10. * (∃y)(z)(Gaz ⊃¬ Gzy) ......... 9 EI x/a
  11. * (z)(Gaz ⊃¬ Gzm) ......... 10 EI y/m
  12. * Gaa ⊃¬ Gam ......... 11 UI z/a
  13. * Gaa ......... 1 UI x/a
  14. * ¬ Gam ......... 12,13 MP
  15. * ¬ (a = m) ......... 13,14 Id
  16. * (y)[¬ (a = y) ⊃ (∃z)(Gaz • Gzy)] ......... 2 UI x/a
  17. * ¬ (a = m) ⊃ (∃z)(Gaz • Gzm) ......... 16 UI y/m
  18. * (∃z)(Gaz • Gzm) ......... 15,17 MP
  19. * Gar • Grm ......... 18 EI z/r
  20. * Gar ......... 19 Simp.
  21. * Grm ......... 19 Simp.
  22. * Gar ⊃¬ Grm ......... 11 UI z/r
  23. * ¬ Grm ......... 20,22 MP
  24. * Grm ¬ Grm ......... 21,23 Conj.
  25. ¬ ¬ (x)(y)(∃z)(Gxz • Gzy) ......... 4-24 IP
  26. (x)(y)(∃z)(Gxz • Gzy) ......... 25 DN

No comments:

Post a Comment