The task: to show that the premises imply the conclusion.
- (x)Gxx
- (x)(y)[¬ (x = y) ⊃ (∃z)(Gxz • Gzy)]
- ∴(x)(y)(∃z)(Gxz • Gzy)
- * ¬ (x)(y)(∃z)(Gxz • Gzy) ......... IP
- * (∃x)¬(y)(∃z)(Gxz • Gzy) ......... 4 QC
- * (∃x)(∃y)¬(∃z)(Gxz • Gzy) ......... 5 QC
- * (∃x)(∃y)(z)¬(Gxz • Gzy) ......... 6 QC
- * (∃x)(∃y)(z)(¬Gxz ∨¬ Gzy) ......... 7 DeM.
- * (∃x)(∃y)(z)(Gxz ⊃¬ Gzy) ......... 8 MI
- * (∃y)(z)(Gaz ⊃¬ Gzy) ......... 9 EI x/a
- * (z)(Gaz ⊃¬ Gzm) ......... 10 EI y/m
- * Gaa ⊃¬ Gam ......... 11 UI z/a
- * Gaa ......... 1 UI x/a
- * ¬ Gam ......... 12,13 MP
- * ¬ (a = m) ......... 13,14 Id
- * (y)[¬ (a = y) ⊃ (∃z)(Gaz • Gzy)] ......... 2 UI x/a
- * ¬ (a = m) ⊃ (∃z)(Gaz • Gzm) ......... 16 UI y/m
- * (∃z)(Gaz • Gzm) ......... 15,17 MP
- * Gar • Grm ......... 18 EI z/r
- * Gar ......... 19 Simp.
- * Grm ......... 19 Simp.
- * Gar ⊃¬ Grm ......... 11 UI z/r
- * ¬ Grm ......... 20,22 MP
- * Grm • ¬ Grm ......... 21,23 Conj.
- ¬ ¬ (x)(y)(∃z)(Gxz • Gzy) ......... 4-24 IP
- (x)(y)(∃z)(Gxz • Gzy) ......... 25 DN
No comments:
Post a Comment