Thursday, 25 August 2011

Understanding Symbolic Logic, Virginia Klenk, 5th edition, Pearson Prentice Hall, 2008, Unit 20, Ex. 2(c), p.381

The task: construct the proof for the following argument.
  1. (∃x){Ax• (y)(Ay ⊃ x=y) • (∃z)[Bz • (w)(Bw ⊃z=w) • z=x]}
  2. Ba
  3. ∴(x)(Ax ⊃ x=a)
  4. * Ax ......... ACP
  5. * Am • (y)(Ay ⊃ m=y) • (∃z)[Bz • (w)(Bw ⊃ z=w) • z=m]} ......... 1 EI x/m
  6. * (y)(Ay ⊃ m=y) ......... 5 Simp.
  7. * Ax ⊃ m=x ......... 6 UI y/x
  8. * m=x ......... 4,7 MP
  9. * (∃z)[Bz • (w)(Bw ⊃ z=w) • z=m] ......... 5 Simp.
  10. * Br • (w)(Bw ⊃ r=w) • r=m ......... 9 EI z/r
  11. * (w)(Bw ⊃ r=w) ......... 10 Simp.
  12. * Ba ⊃ r=a ......... 11 UI w/a
  13. * r = a ......... 2,12 MP
  14. * r = m ......... 10 Simp.
  15. * m = r ......... 14 Comm.
  16. * m = a ......... 15,13 Id
  17. * x = m ......... 8 Comm.
  18. * x = a ......... 17,16 Id
  19. Ax ⊃ x=a ......... 4-18 CP
  20. (x)(Ax ⊃ x=a) ......... 19 UG

No comments:

Post a Comment