Thursday, 18 August 2011

Understanding Symbolic Logic, Virginia Klenk, 5th edition, Pearson Prentice Hall, 2008, Unit 20, Ex. 2(a), p.381

Construct a proof for the following argument:
  1. (x){{Fx • (∃y)[Fy ¬ (x = y)]} ⊃(Axb ∨Abx)}
  2. Fa • Fb
  3. Ga • ¬ Gb
  4. Aab ∨Aba
  5. ¬ (a = b) ......... 3 Id
  6. Fb ......... 2 Simp.
  7. Fb • ¬ (a = b) ......... 6,5 Conj.
  8. (∃y)[Fy ¬ (a = y)] ......... 7 EG
  9. {Fa • (∃y)[Fy ¬ (a = y)]} ⊃(Aab ∨Aba) ......... 1 UI x/a
  10. Fa ......... 2 Simp.
  11. Fa • (∃y)[Fy ¬ (a = y)] ......... 10,8 Conj.
  12. Aab ∨Aba ......... 11,9 MP

No comments:

Post a Comment