Thursday, 25 August 2011

Understanding Symbolic Logic, Virginia Klenk, 5th edition, Pearson Prentice Hall, 2008, Unit 20, Ex. 2(c), p.381

The task: construct the proof for the following argument.
  1. (∃x){Ax• (y)(Ay ⊃ x=y) • (∃z)[Bz • (w)(Bw ⊃z=w) • z=x]}
  2. Ba
  3. ∴(x)(Ax ⊃ x=a)
  4. * Ax ......... ACP
  5. * Am • (y)(Ay ⊃ m=y) • (∃z)[Bz • (w)(Bw ⊃ z=w) • z=m]} ......... 1 EI x/m
  6. * (y)(Ay ⊃ m=y) ......... 5 Simp.
  7. * Ax ⊃ m=x ......... 6 UI y/x
  8. * m=x ......... 4,7 MP
  9. * (∃z)[Bz • (w)(Bw ⊃ z=w) • z=m] ......... 5 Simp.
  10. * Br • (w)(Bw ⊃ r=w) • r=m ......... 9 EI z/r
  11. * (w)(Bw ⊃ r=w) ......... 10 Simp.
  12. * Ba ⊃ r=a ......... 11 UI w/a
  13. * r = a ......... 2,12 MP
  14. * r = m ......... 10 Simp.
  15. * m = r ......... 14 Comm.
  16. * m = a ......... 15,13 Id
  17. * x = m ......... 8 Comm.
  18. * x = a ......... 17,16 Id
  19. Ax ⊃ x=a ......... 4-18 CP
  20. (x)(Ax ⊃ x=a) ......... 19 UG

Thursday, 18 August 2011

Understanding Symbolic Logic, Virginia Klenk, 5th edition, Pearson Prentice Hall, 2008, Unit 20, Ex. 2(a), p.381

Construct a proof for the following argument:
  1. (x){{Fx • (∃y)[Fy ¬ (x = y)]} ⊃(Axb ∨Abx)}
  2. Fa • Fb
  3. Ga • ¬ Gb
  4. Aab ∨Aba
  5. ¬ (a = b) ......... 3 Id
  6. Fb ......... 2 Simp.
  7. Fb • ¬ (a = b) ......... 6,5 Conj.
  8. (∃y)[Fy ¬ (a = y)] ......... 7 EG
  9. {Fa • (∃y)[Fy ¬ (a = y)]} ⊃(Aab ∨Aba) ......... 1 UI x/a
  10. Fa ......... 2 Simp.
  11. Fa • (∃y)[Fy ¬ (a = y)] ......... 10,8 Conj.
  12. Aab ∨Aba ......... 11,9 MP

Wednesday, 10 August 2011

The Logic Book, M. Bergmann, J. Moor, J. Nelson, McGraw Hill, 2004, 10.4E, 8(f), p. 558

The task: show that the following argument is valid,
  1. (x)(Px ⊃ Qx)
  2. ∴ [(∃x)Px • (∃x)Qx)] ≡ (∃x)(Px • Qx)
  3. * (∃x)Px • (∃x)Qx) ......... ACP
  4. * (∃x)Px ......... 3 Simp.
  5. * Pa ......... 4 EI x/a
  6. * Pa ⊃ Qa ......... 1 UI x/a
  7. * Qa ......... 5,6 MP
  8. * Pa • Qa ......... 5,7 Conj.
  9. * (∃x)(Px • Qx) ......... 8 EG
  10. [(∃x)Px • (∃x)Qx)] ⊃ (∃x)(Px • Qx) ......... 3-9 CP
  11. * (∃x)(Px • Qx) ......... ACP
  12. * Pm • Qm ......... 11 EI x/m
  13. * Pm ......... 12 Simp.
  14. * (∃x)Px ......... 13 EG
  15. * Qm ......... 12 Simp.
  16. * (∃x)Qx ......... 15 EG
  17. * (∃x)Px • (∃x)Qx ......... 14,16 Conj.
  18. (∃x)(Px • Qx) [(∃x)Px • (∃x)Qx)] ......... 11-17 CP
  19. {[(∃x)Px • (∃x)Qx)] ⊃ (∃x)(Px • Qx)} • {(∃x)(Px • Qx) [(∃x)Px • (∃x)Qx)]} ......... 10,18 Conj.
  20. [(∃x)Px • (∃x)Qx)] ≡ (∃x)(Px • Qx) ......... 19 BE

Thursday, 4 August 2011

The Logic Book, M. Bergmann, J. Moor, J. Nelson, McGraw Hill, 2004, 10.4E, 8(d), p. 558

Show that the following argument is valid.
  1. (x)[(Fx • Gx) ≡ (∃y)(Axy • Py)]
  2. (∃x)(∃y)(Fx • Axy • Py)
  3. ∴(∃x)(Fx • Gx)
  4. (∃y)(Fa • Aay • Py) ......... 2 EI x/a
  5. Fa • Aam • Pm ......... 4 EI y/m
  6. (Fa • Ga) ≡ (∃y)(Aay • Py) ......... 1 UI x/a
  7. [(Fa • Ga) (∃y)(Aay • Py)] • [(∃y)(Aay • Py) (Fa • Ga)] ......... 6 BE
  8. Aam • Pm ......... 5 Simp.
  9. (∃y)(Aay • Py) ......... 8 EG
  10. (∃y)(Aay • Py) (Fa • Ga) ......... 7 Simp.
  11. Fa • Ga ......... 9,10 MP
  12. (∃x)(Fx • Gx) ......... 11 EG