The task: construct the proof for the following argument.
- (∃x){Ax• (y)(Ay ⊃ x=y) • (∃z)[Bz • (w)(Bw ⊃z=w) • z=x]}
- Ba
- ∴(x)(Ax ⊃ x=a)
- * Ax ......... ACP
- * Am • (y)(Ay ⊃ m=y) • (∃z)[Bz • (w)(Bw ⊃ z=w) • z=m]} ......... 1 EI x/m
- * (y)(Ay ⊃ m=y) ......... 5 Simp.
- * Ax ⊃ m=x ......... 6 UI y/x
- * m=x ......... 4,7 MP
- * (∃z)[Bz • (w)(Bw ⊃ z=w) • z=m] ......... 5 Simp.
- * Br • (w)(Bw ⊃ r=w) • r=m ......... 9 EI z/r
- * (w)(Bw ⊃ r=w) ......... 10 Simp.
- * Ba ⊃ r=a ......... 11 UI w/a
- * r = a ......... 2,12 MP
- * r = m ......... 10 Simp.
- * m = r ......... 14 Comm.
- * m = a ......... 15,13 Id
- * x = m ......... 8 Comm.
- * x = a ......... 17,16 Id
- Ax ⊃ x=a ......... 4-18 CP
- (x)(Ax ⊃ x=a) ......... 19 UG