Another theorem to prove. The hardest part is to realize that the same expression can be instantiated twice, each time to a different variable, the idea being to set up two identities under the second assumption below and then use the transitive property of identity to derive x = y. It would have been possible to decompose line 6 into a conjunction of two disjunctions and then simplify via disjunctive syllogism but I am too lazy to do that so I have used exportation instead.
Theorem: {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)]
- * (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / ACP
- * (∃x)Fx / 1Simp.
- * Fm / 2EI x/m
- * (x)(y)[(Fx • Fy) ⊃x = y] / 1Simp.
- * (y)[(Fm • Fy) ⊃m = y] / 4UI x/m
- * (Fm • Fy) ⊃m = y / 5UI y/y
- * Fm ⊃(Fy ⊃m = y) / 6Exp.
- * Fy ⊃m = y / 3,7MP
- * (y)(Fy ⊃m = y) / 8UG
- * Fm • (y)(Fy ⊃m = y) / 3,9Conj.
- * (∃x)[Fx • (y)(Fy ⊃x = y)] / 10EG
- {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)]
- * (∃x)[Fx • (y)(Fy ⊃x = y)] / ACP
- * Fa • (y)(Fy ⊃a = y) / 13EI
- * (y)(Fy ⊃a = y) / 14Simp.
- * * Fx • Fy / ACP
- * * Fy ⊃a = y / 15UI y/y
- * * Fy / 16Simp.
- * * a = y / 18,17MP
- * * Fx ⊃a = x / 15UI y/x
- * * Fx / 16Simp.
- * * a = x / 21,20MP
- * * x = a / 22Id
- * * x = y / 19,23Id
- * (Fx • Fy) ⊃x = y / 16-24CP
- * (y)[(Fx • Fy) ⊃x = y] / 25UG
- * (x)(y)[(Fx • Fy) ⊃x = y] / 26UG
- * Fa / 14Simp.
- * Fa • (x)(y)[(Fx • Fy) ⊃x = y] / 28,27Conj.
- * (∃x){Fx • (x)(y)[(Fx • Fy) ⊃x = y]} / 29EG
- (∃x)[Fx • (y)(Fy ⊃x = y)] ⊃(∃x){Fx • (x)(y)[(Fx • Fy) ⊃x = y]} / 13-30CP
- {{(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)]} • {(∃x)[Fx • (y)(Fy ⊃x = y)] ⊃(∃x){Fx • (x)(y)[(Fx • Fy) ⊃x = y]}} / 12,31Conj.
- {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)] / 32BE
No comments:
Post a Comment