Friday, 21 May 2010

Understanding Symbolic Logic, Virginia Klenk, Prentice Hall, 2008, Fifth edition, Unit 20, Ex.3e, p.381

Another theorem to prove. The hardest part is to realize that the same expression can be instantiated twice, each time to a different variable, the idea being to set up two identities under the second assumption below and then use the transitive property of identity to derive x = y. It would have been possible to decompose line 6 into a conjunction of two disjunctions and then simplify via disjunctive syllogism but I am too lazy to do that so I have used exportation instead.
Theorem: {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)]
  1. * (∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y] / ACP
  2. * (∃x)Fx / 1Simp.
  3. * Fm / 2EI x/m
  4. * (x)(y)[(Fx • Fy) ⊃x = y] / 1Simp.
  5. * (y)[(Fm • Fy) ⊃m = y] / 4UI x/m
  6. * (Fm • Fy) ⊃m = y / 5UI y/y
  7. * Fm ⊃(Fy ⊃m = y) / 6Exp.
  8. * Fy ⊃m = y / 3,7MP
  9. * (y)(Fy ⊃m = y) / 8UG
  10. * Fm • (y)(Fy ⊃m = y) / 3,9Conj.
  11. * (∃x)[Fx • (y)(Fy ⊃x = y)] / 10EG
  12. {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)]
  13. * (∃x)[Fx • (y)(Fy ⊃x = y)] / ACP
  14. * Fa • (y)(Fy ⊃a = y) / 13EI
  15. * (y)(Fy ⊃a = y) / 14Simp.
  16. * * Fx • Fy / ACP
  17. * * Fy ⊃a = y / 15UI y/y
  18. * * Fy / 16Simp.
  19. * * a = y / 18,17MP
  20. * * Fx ⊃a = x / 15UI y/x
  21. * * Fx / 16Simp.
  22. * * a = x / 21,20MP
  23. * * x = a / 22Id
  24. * * x = y / 19,23Id
  25. * (Fx • Fy) ⊃x = y / 16-24CP
  26. * (y)[(Fx • Fy) ⊃x = y] / 25UG
  27. * (x)(y)[(Fx • Fy) ⊃x = y] / 26UG
  28. * Fa / 14Simp.
  29. * Fa • (x)(y)[(Fx • Fy) ⊃x = y] / 28,27Conj.
  30. * (∃x){Fx • (x)(y)[(Fx • Fy) ⊃x = y]} / 29EG
  31. (∃x)[Fx • (y)(Fy ⊃x = y)] ⊃(∃x){Fx • (x)(y)[(Fx • Fy) ⊃x = y]} / 13-30CP
  32. {{(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ⊃ (∃x)[Fx • (y)(Fy ⊃x = y)]} • {(∃x)[Fx • (y)(Fy ⊃x = y)] ⊃(∃x){Fx • (x)(y)[(Fx • Fy) ⊃x = y]}} / 12,31Conj.
  33. {(∃x)Fx • (x)(y)[(Fx • Fy) ⊃x = y]} ≡ (∃x)[Fx • (y)(Fy ⊃x = y)] / 32BE

No comments:

Post a Comment