Monday, 3 May 2010

Deduction, Daniel Bonevac, Blackwell Publishing, 2003, 8.3, Problem 14

As in earlier problems in this section (11, 12, 13), we show that the implication holds. The overall strategy is to show that the biconditional in the conclusion holds both ways, so we prove each implication separately and conjoin them on line 48. After making the first assumption on line 3 we might be tempted to carry on and assume Fa on line 4 in order to bring us faster to the conclusion. However, we have already introduced Fa on line 3 and repeating it would be a violation. Instead, it is better to assume the negation of (∃x)(Gx • Hx) and then show that we can obtain the negation of Fa. Since it is an implication, we swap round the sides by contraposition and arrive at the desired conclusion on line 20. Likewise, in the second set of assumptions further down, the conclusion has been negated - this time to obtain a contradiction.
  1. (∃x)(y)(y = x ≡ Gy)
  2. ∴ (∃x)[Gx • (Fa ⊃Hx)] ≡ [Fa ⊃(∃x)(Gx • Hx)]
  3. * (∃x)[Gx • (Fa ⊃Hx)] / ACP
  4. * * ¬ (∃x)(Gx • Hx) / ACP
  5. * * (x)(Gx ⊃¬ Hx) / 4QC
  6. * * Gr • (Fa ⊃Hr) / 3EI x/r
  7. * * (y)(y = m ≡ Gy) / 1EI x/m
  8. * * r = m ≡ Gr / 7UI y/r
  9. * * (r = m ⊃ Gr) • (Gr ⊃r = m) / 8BE
  10. * * Gr ⊃r = m / 9Simp.
  11. * * Gr / 6Simp.
  12. * * r = m / 11,10MP
  13. * * Gm ⊃¬ Hm / 5UI x/m
  14. * * Gm / 12,11Id
  15. * * ¬ Hm / 14,13MP
  16. * * ¬ Hr / 12,15Id
  17. * * Fa ⊃Hr / 6Simp.
  18. * * ¬ Fa / 16,17MT
  19. * ¬ (∃x)(Gx • Hx) ⊃¬ Fa / 4-18ACP
  20. * Fa ⊃(∃x)(Gx • Hx) / 19Contrap.
  21. (∃x)[Gx • (Fa ⊃Hx)] ⊃[Fa ⊃(∃x)(Gx • Hx)] / 3-20CP
  22. * Fa ⊃(∃x)(Gx • Hx) / ACP
  23. * * ¬ (∃x)[Gx • (Fa ⊃Hx)] / AIP
  24. * * (x)[Gx ⊃(Fa • ¬ Hx)] / 23QC
  25. * * (y)(y = m ≡ Gy) / 1EI x/m
  26. * * m = m ≡ Gm / 25UI y/m
  27. * * (m = m ⊃Gm) • (Gm ⊃m = m) / 26BE
  28. * * m = m ⊃Gm / 27Simp.
  29. * * m = m / Id
  30. * * Gm / 29,28MP
  31. * * Gm ⊃(Fa • ¬ Hm) / 24UI x/m
  32. * * Fa • ¬ Hm / 30,31MP
  33. * * Fa / 32Simp.
  34. * * (∃x)(Gx • Hx) / 22,33MP
  35. * * Gr • Hr / 34EI x/r
  36. * * r = m ≡ Gr / 25UI y/r
  37. * * (r = m ⊃Gr) • (Gr ⊃r = m) / 36BE
  38. * * Gr ⊃r = m / 37Simp.
  39. * * Gr / 35Simp.
  40. * * r = m / 38,39MP
  41. * * Hr / 35Simp.
  42. * * Hm / 40, 41Id
  43. * * ¬ Hm / 32Simp.
  44. * * Hm • ¬ Hm / 42,43Conj.
  45. * ¬ ¬ (∃x)[Gx • (Fa ⊃Hx)] / 23-44IP
  46. * (∃x)[Gx • (Fa ⊃Hx)] / 45DN
  47. [Fa ⊃(∃x)(Gx • Hx)] ⊃(∃x)[Gx • (Fa ⊃Hx)] / 23-46CP
  48. {(∃x)[Gx • (Fa ⊃Hx)] ⊃[Fa ⊃(∃x)(Gx • Hx)]} • {[Fa ⊃(∃x)(Gx • Hx)] ⊃(∃x)[Gx • (Fa ⊃Hx)]} / 21,47Conj.
  49. (∃x)[Gx • (Fa ⊃Hx)] ≡ [Fa ⊃(∃x)(Gx • Hx)] / 48BE

No comments:

Post a Comment