As in earlier problems in this section (11, 12, 13), we show that the implication holds. The overall strategy is to show that the biconditional in the conclusion holds both ways, so we prove each implication separately and conjoin them on line 48. After making the first assumption on line 3 we might be tempted to carry on and assume Fa on line 4 in order to bring us faster to the conclusion. However, we have already introduced Fa on line 3 and repeating it would be a violation. Instead, it is better to assume the negation of (∃x)(Gx • Hx) and then show that we can obtain the negation of Fa. Since it is an implication, we swap round the sides by contraposition and arrive at the desired conclusion on line 20. Likewise, in the second set of assumptions further down, the conclusion has been negated - this time to obtain a contradiction.
- (∃x)(y)(y = x ≡ Gy)
- ∴ (∃x)[Gx • (Fa ⊃Hx)] ≡ [Fa ⊃(∃x)(Gx • Hx)]
- * (∃x)[Gx • (Fa ⊃Hx)] / ACP
- * * ¬ (∃x)(Gx • Hx) / ACP
- * * (x)(Gx ⊃¬ Hx) / 4QC
- * * Gr • (Fa ⊃Hr) / 3EI x/r
- * * (y)(y = m ≡ Gy) / 1EI x/m
- * * r = m ≡ Gr / 7UI y/r
- * * (r = m ⊃ Gr) • (Gr ⊃r = m) / 8BE
- * * Gr ⊃r = m / 9Simp.
- * * Gr / 6Simp.
- * * r = m / 11,10MP
- * * Gm ⊃¬ Hm / 5UI x/m
- * * Gm / 12,11Id
- * * ¬ Hm / 14,13MP
- * * ¬ Hr / 12,15Id
- * * Fa ⊃Hr / 6Simp.
- * * ¬ Fa / 16,17MT
- * ¬ (∃x)(Gx • Hx) ⊃¬ Fa / 4-18ACP
- * Fa ⊃(∃x)(Gx • Hx) / 19Contrap.
- (∃x)[Gx • (Fa ⊃Hx)] ⊃[Fa ⊃(∃x)(Gx • Hx)] / 3-20CP
- * Fa ⊃(∃x)(Gx • Hx) / ACP
- * * ¬ (∃x)[Gx • (Fa ⊃Hx)] / AIP
- * * (x)[Gx ⊃(Fa • ¬ Hx)] / 23QC
- * * (y)(y = m ≡ Gy) / 1EI x/m
- * * m = m ≡ Gm / 25UI y/m
- * * (m = m ⊃Gm) • (Gm ⊃m = m) / 26BE
- * * m = m ⊃Gm / 27Simp.
- * * m = m / Id
- * * Gm / 29,28MP
- * * Gm ⊃(Fa • ¬ Hm) / 24UI x/m
- * * Fa • ¬ Hm / 30,31MP
- * * Fa / 32Simp.
- * * (∃x)(Gx • Hx) / 22,33MP
- * * Gr • Hr / 34EI x/r
- * * r = m ≡ Gr / 25UI y/r
- * * (r = m ⊃Gr) • (Gr ⊃r = m) / 36BE
- * * Gr ⊃r = m / 37Simp.
- * * Gr / 35Simp.
- * * r = m / 38,39MP
- * * Hr / 35Simp.
- * * Hm / 40, 41Id
- * * ¬ Hm / 32Simp.
- * * Hm • ¬ Hm / 42,43Conj.
- * ¬ ¬ (∃x)[Gx • (Fa ⊃Hx)] / 23-44IP
- * (∃x)[Gx • (Fa ⊃Hx)] / 45DN
- [Fa ⊃(∃x)(Gx • Hx)] ⊃(∃x)[Gx • (Fa ⊃Hx)] / 23-46CP
- {(∃x)[Gx • (Fa ⊃Hx)] ⊃[Fa ⊃(∃x)(Gx • Hx)]} • {[Fa ⊃(∃x)(Gx • Hx)] ⊃(∃x)[Gx • (Fa ⊃Hx)]} / 21,47Conj.
- (∃x)[Gx • (Fa ⊃Hx)] ≡ [Fa ⊃(∃x)(Gx • Hx)] / 48BE
No comments:
Post a Comment