Saturday 30 January 2010

Deductive Logic, Warren Goldfarb, Hackett, 2003, Part IV, Ex. 13(a-b)

Russell's way of expressing definite descriptions was: (∃x)[Fx • (y)(Fy ⊃y = x)]; Quine preferred (∃x)(y)(Fy ≡ x = y). They are equivalent. We show this by first working one way and then the other (line 26). The equivalence is expressed as a conjunction of two conditionals (line2), then each conditional is proved separately. There are other ways of proving this equivalence - for one we could have condensed lines 28-34 using pre-nex rules rather than my cumbersome instantiation, then generalization, then instantiation again, but I have done it to show that it is possible. We can generalize within an assumption as long as the variable we generalize from is not free on the first line of the assumption.
  1. (∃x)[Fx • (y)(Fy ⊃y = x)] ≡ (∃x)(y)(Fy ≡ x = y)
  2. {(∃x)[Fx • (y)(Fy ⊃y = x)] ⊃(∃x)(y)(Fy ≡ x = y)} • {(∃x)(y)(Fy ≡ x = y) ⊃ (∃x)[Fx • (y)(Fy ⊃y = x)]} / 1BE
  3. (∃x)[Fx • (y)(Fy ⊃y = x)] ⊃ (∃x)(y)(Fy ≡ x = y) / 2Simp.
  4. * (∃x)[Fx • (y)(Fy ⊃y = x)] / ACP
  5. * * ¬ (∃x)(y)(Fy ≡ x = y) / AIP
  6. * * (x)(∃y) ¬ (Fy ≡ x = y) / 5CQ
  7. * * (x)(∃y) ¬ [(Fy ⊃x = y) • (x = y ⊃Fy)] / 6BE
  8. * * Fa • (y)(Fy ⊃y = a) / 4EI x/a
  9. * * Fa / 8Simp.
  10. * * (y)(Fy ⊃y = a) / 8Simp.
  11. * * (∃y) ¬ [(Fy ⊃a = y) • (a = y ⊃Fy)] / 7UI x/a
  12. * * ¬ [(Fm ⊃a = m) • (a = m ⊃Fm)] / 11EI y/m
  13. * * ¬ (Fm ⊃a = m) ∨¬ (a = m ⊃Fm)] / 12DeM
  14. * * Fm ⊃m = a / 10UI y/m
  15. * * Fm ⊃a = m / 14Id
  16. * * ¬ (a = m ⊃Fm) / 15,14DS
  17. * * ¬ [¬ (a = m) ∨Fm] / 16MI
  18. * * a = m • ¬ Fm / 17DeM
  19. * * ¬ Fm / 18Simp.
  20. * * ¬ (a = m) / 9,19Id
  21. * * a = m / 18 Simp.
  22. * * a = m • ¬ (a = m) / 20,21Conj.
  23. * ¬ ¬ (∃x)(y)(Fy ≡ x = y) / 5 - 22IP
  24. * (∃x)(y)(Fy ≡ x = y) / 23DN
  25. (∃x)[Fx • (y)(Fy ⊃y = x)] ⊃ (∃x)(y)(Fy ≡ x = y) / 4 - 24CP
  26. (∃x)(y)(Fy ≡ x = y) ⊃ (∃x)[Fx • (y)(Fy ⊃y = x)] / 2Simp.
  27. * (∃x)(y)(Fy ≡ x = y) / ACP
  28. * (y)(Fy ≡ a = y) / 27EI x/a
  29. * Fy ≡ a = y / 28UI y/y
  30. * (Fy ⊃ a = y) • (a = y ⊃Fy) / 29BE
  31. * Fy ⊃ a = y / 30Simp.
  32. * (y)(Fy ⊃ a = y) / 31UG
  33. * a = y ⊃Fy / 30Simp.
  34. * (y)(a = y ⊃Fy) / 33UG
  35. * a = a ⊃Fa / 34UI y/a
  36. * a = a / Id
  37. * Fa / 36,35MP
  38. * Fa • (y)(Fy ⊃a = y) / 37,32Conj.
  39. * (∃x)[Fx • (y)(Fy ⊃x = y)] / 36EG
  40. (∃x)(y)(Fy ≡ x = y) ⊃ (∃x)[Fx • (y)(Fy ⊃y = x)] / 27 - 39CP
  41. {(∃x)[Fx • (y)(Fy ⊃y = x)] ⊃(∃x)(y)(Fy ≡ x = y)} • {(∃x)(y)(Fy ≡ x = y) ⊃ (∃x)[Fx • (y)(Fy ⊃y = x)]} / 25,40Conj.
  42. (∃x)[Fx • (y)(Fy ⊃y = x)] ≡ (∃x)(y)(Fy ≡ x = y) / 41BE

No comments:

Post a Comment