Working backwards from the conclusion here gets us only so far, which is why the conclusion is best reached by Indirect Proof after instantiating the first two premises. The tricky part was getting to step 44 from the information on line 35, 36 and 37. Instinctively, we could argue:
Either Samuel Clemens was Mark Twain or Clement Samuelson was Mark Twain.
Neither Samuel Clemens nor Clement Samuelson was Dick Tracy.
Therefore, Dick Tracy was not Mark Twain.
However, the reasoning appears more convincing to me if we argue by another Indirect Proof, on line 38. If we can prove that 'Dick Tracy was Mark Twain' is a contradiction, given our premises, we can be sure that the original conclusion 'Dick Tracy was not Mark Twain' is supported by the premises. Once this hurdle is cleared, it only remains to follow up with multiple instantiations of the main conclusion until we obtain another contradiction on line 88.
- (∃x)(∃y)(∃z){Cx • Cy • Cz • Rx • Ry • Rz • ¬ (x = y) • ¬ (x = z) • ¬ (z = y) • (w){[(Cw • Rw) ⊃[(w = x) ∨(w = y) ∨(w = z)]}}
- (∃x){Cx • Rx • Px • (y)[(Cy • Ry • Py) ⊃y = x]}
- (x)[(Cx • Rx • ¬ Px) ⊃Ox]
- ∴(∃x)(∃y)[Ox • Oy • Rx • Ry • ¬ (x = y)]
- (∃y)(∃z){Ca • Cy • Cz • Ra • Ry • Rz • ¬ (a = y) • ¬ (a = z) • ¬ (z = y) • (w){[(Cw • Rw) ⊃[(w = a) ∨(w = y) ∨(w = z)]}} / 1EI
- (∃z){Ca • Cm • Cz • Ra • Rm • Rz • ¬ (a = m) • ¬ (a = z) • ¬ (z = m) • (w){[(Cw • Rw) ⊃[(w = a) ∨(w = m) ∨(w = z)]}} / 5EI
- Ca • Cm • Ch • Ra • Rm • Rh • ¬ (a = m) • ¬ (a = h) • ¬ (h = m) • (w){[(Cw • Rw) ⊃[(w = a) ∨(w = m) ∨(w = h)]}} / 6EI
- Ci • Ri • Pi • (y)[(Cy • Ry • Py) ⊃y = i] / 2EI
- * ¬ (∃x)(∃y)[Ox • Oy • Rx • Ry • ¬ (x = y)] / AIP
- * (x)(y)[(Ox • Oy • Rx • Ry) ⊃x = y] / 9CQ
- * (y)[(Oa • Oy • Ra • Ry) ⊃a = y] / 10UI
- * (Oa • Om • Ra • Rm) ⊃a = m / 11UI
- * ¬ (a = m) / 7Simp
- * ¬ (Oa • Om • Ra • Rm) / 13,12MT
- * ¬ Oa ∨ ¬ Om ∨ ¬ Ra ∨ ¬ Rm / 14DeM
- * Ra • Rm / 7Simp
- * ¬ Oa ∨ ¬ Om ∨/ 16,15DS
- * (Ca • Ra • ¬ Pa) ⊃Oa / 3UI
- * (Cm • Rm • ¬ Pm) ⊃Om / 3UI
- * [(Ca • Ra • ¬ Pa) ⊃Oa] • [(Cm • Rm • ¬ Pm) ⊃Om] /18,19Conj
- * ¬ (Ca • Ra • ¬ Pa) ∨¬ (Cm • Rm • ¬ Pm) / 17,20DD
- * ¬ Ca ∨¬ Ra ∨ Pa ∨¬ Cm ∨¬ Rm ∨Pm / 21DeM
- * Ca • Ra • Cm • Rm / 7Simp
- * Pa ∨Pm / 22,23DS
- * (y)[(Cy • Ry • Py) ⊃y = i] / 8Simp
- * (Ca • Ra • Pa) ⊃a = i / 25UI
- * (Ca • Ra) ⊃(Pa ⊃a = i) / 26Exp
- * Ca • Ra / 23Simp
- * Pa ⊃a = i / 28,27MP
- * (Cm • Rm • Pm) ⊃m = i / 25UI
- * Cm • Rm / 23Simp
- * (Cm • Rm) ⊃(Pm ⊃m = i) / 30Exp
- * Pm ⊃m = i / 31,32MP
- * (Pa ⊃a = i) • (Pm ⊃m = i) / 29,33Conj
- * a = i ∨ m = i / 24,34CD
- * ¬ (a = h) / 7Simp
- * ¬ (h = m) / 8Simp
- * * i = h / AIP
- * * ¬ (m = i) / 37,38Id
- * * a = i / 39,35DS
- * * i = a / 40Id
- * * ¬ (i = h) / 41,36Id
- * (i = h) • ¬ (i = h) / 38,42Contr
- * ¬ (i = h) / 38-43IP
- * (Ch • Rh • Ph) ⊃h = i / 25UI
- * ¬ (Ch • Rh • Ph) / 44,45MT
- * ¬ Ch ∨¬ Rh ∨ ¬ Ph / 46DeM
- * Ch • Rh / 7Simp
- * ¬ Ph / 48,47DS
- * (Ch • Rh • ¬ Ph) ⊃Oh / 3UI
- * Ch • Rh • ¬ Ph / 48,49Conj
- * Oh / 51,50MP
- * (y)[(Oa • Oy • Ra • Ry) ⊃a = y] / 10UI
- * (Oa • Oh • Ra • Rh) ⊃a = h / 53UI
- * ¬ (a = h) / 7Simp
- * ¬ (Oa • Oh • Ra • Rh) / 55,54MT
- * ¬ Oa ∨¬ Oh ∨¬ Ra ∨¬ Rh / 56DeM
- * Ra • Rh / 7Simp
- * ¬ Oa∨¬ Oh / 58,57DS
- * ¬ Oa / 52,59DS
- * (Ca • Ra • ¬ Pa) ⊃Oa / 3UI
- * ¬ (Ca • Ra • ¬ Pa) / 60,61MT
- * ¬ Ca ∨¬ Ra ∨Pa / 62DeM
- * Pa / 23,63DS
- * (Ca • Ra • Pa) ⊃a = i / 25UI
- * Ca • Ra • Pa / 28,64Conj
- * a = i / 66,65MP
- * ¬ (m = a) / 13Id
- * ¬ (m = i) / 67,68Id
- * (y)[(Oh • Oy • Rh • Ry) ⊃h = y] / 10UI
- * (Oh • Om • Rh • Rm) ⊃h = m / 70UI
- * ¬ (h = m) /7Simp
- * ¬ (Oh • Om • Rh • Rm) / 72,71MT
- * ¬ Oh ∨¬ Om ∨¬ Rh ∨¬ Rm / 73DeM
- * Rh • Rm / 7Simp
- * ¬ Oh ∨¬ Om / 75,74DS
- * (Ch • Rh • ¬ Ph) ⊃Oh / 3UI
- * (Cm • Rm • ¬ Pm) ⊃Om / 3UI
- * [(Ch • Rh • ¬ Ph) ⊃Oh] • [(Cm • Rm • ¬ Pm) ⊃Om] / 77,78Conj
- * ¬ (Ch • Rh • ¬ Ph) ∨¬ (Cm • Rm • ¬ Pm) / 76,79DD
- * ¬ Ch ∨¬ Rh ∨Ph ∨¬ Cm ∨¬ Rm ∨Pm / 80DeM
- * Ch • Cm • Rh • Rm / 7Simp
- * Ph ∨Pm / 82,81DS
- * Pm / 49,83DS
- * (Cm • Rm • Pm) ⊃m = i / 25UI
- * Cm • Rm • Pm / 31,84Conj
- * m = i / 86,85MP
- * m = i • ¬ (m = i) / 87,69Contr
- (∃x)(∃y)[Ox • Oy • Rx • Ry • ¬ (x = y)] / 9-88IP
hi could you solve problem 7m in Unit 8 Virginia Klenk, 5th Edition?
ReplyDeleteIt is impossible.