Wednesday, 7 October 2009

Understanding Symbolic Logic, Virginia Klenk, Prentice Hall, 2008, Unit 20, Problem 1l

Working backwards from the conclusion here gets us only so far, which is why the conclusion is best reached by Indirect Proof after instantiating the first two premises. The tricky part was getting to step 44 from the information on line 35, 36 and 37. Instinctively, we could argue:


Either Samuel Clemens was Mark Twain or Clement Samuelson was Mark Twain.
Neither Samuel Clemens nor Clement Samuelson was Dick Tracy.
Therefore, Dick Tracy was not Mark Twain.


However, the reasoning appears more convincing to me if we argue by another Indirect Proof, on line 38. If we can prove that 'Dick Tracy was Mark Twain' is a contradiction, given our premises, we can be sure that the original conclusion 'Dick Tracy was not Mark Twain' is supported by the premises. Once this hurdle is cleared, it only remains to follow up with multiple instantiations of the main conclusion until we obtain another contradiction on line 88.



  1. (∃x)(∃y)(∃z){Cx • Cy • Cz • Rx • Ry • Rz • ¬ (x = y) • ¬ (x = z) • ¬ (z = y) • (w){[(Cw • Rw) ⊃[(w = x) ∨(w = y) ∨(w = z)]}}
  2. (∃x){Cx • Rx • Px • (y)[(Cy • Ry • Py) ⊃y = x]}

  3. (x)[(Cx • Rx • ¬ Px) ⊃Ox]

  4. ∴(∃x)(∃y)[Ox • Oy • Rx • Ry • ¬ (x = y)]

  5. (∃y)(∃z){Ca • Cy • Cz • Ra • Ry • Rz • ¬ (a = y) • ¬ (a = z) • ¬ (z = y) • (w){[(Cw • Rw) ⊃[(w = a) ∨(w = y) ∨(w = z)]}} / 1EI

  6. (∃z){Ca • Cm • Cz • Ra • Rm • Rz • ¬ (a = m) • ¬ (a = z) • ¬ (z = m) • (w){[(Cw • Rw) ⊃[(w = a) ∨(w = m) ∨(w = z)]}} / 5EI

  7. Ca • Cm • Ch • Ra • Rm • Rh • ¬ (a = m) • ¬ (a = h) • ¬ (h = m) • (w){[(Cw • Rw) ⊃[(w = a) ∨(w = m) ∨(w = h)]}} / 6EI

  8. Ci • Ri • Pi • (y)[(Cy • Ry • Py) ⊃y = i] / 2EI

  9. * ¬ (∃x)(∃y)[Ox • Oy • Rx • Ry • ¬ (x = y)] / AIP

  10. * (x)(y)[(Ox • Oy • Rx • Ry) ⊃x = y] / 9CQ

  11. * (y)[(Oa • Oy • Ra • Ry) ⊃a = y] / 10UI

  12. * (Oa • Om • Ra • Rm) ⊃a = m / 11UI

  13. * ¬ (a = m) / 7Simp

  14. * ¬ (Oa • Om • Ra • Rm) / 13,12MT

  15. * ¬ Oa ∨ ¬ Om ∨ ¬ Ra ∨ ¬ Rm / 14DeM

  16. * Ra • Rm / 7Simp

  17. * ¬ Oa ∨ ¬ Om ∨/ 16,15DS

  18. * (Ca • Ra • ¬ Pa) ⊃Oa / 3UI

  19. * (Cm • Rm • ¬ Pm) ⊃Om / 3UI

  20. * [(Ca • Ra • ¬ Pa) ⊃Oa] • [(Cm • Rm • ¬ Pm) ⊃Om] /18,19Conj

  21. * ¬ (Ca • Ra • ¬ Pa) ∨¬ (Cm • Rm • ¬ Pm) / 17,20DD

  22. * ¬ Ca ∨¬ Ra ∨ Pa ∨¬ Cm ∨¬ Rm ∨Pm / 21DeM

  23. * Ca • Ra • Cm • Rm / 7Simp

  24. * Pa ∨Pm / 22,23DS

  25. * (y)[(Cy • Ry • Py) ⊃y = i] / 8Simp

  26. * (Ca • Ra • Pa) ⊃a = i / 25UI

  27. * (Ca • Ra) ⊃(Pa ⊃a = i) / 26Exp

  28. * Ca • Ra / 23Simp

  29. * Pa ⊃a = i / 28,27MP

  30. * (Cm • Rm • Pm) ⊃m = i / 25UI

  31. * Cm • Rm / 23Simp

  32. * (Cm • Rm) ⊃(Pm ⊃m = i) / 30Exp

  33. * Pm ⊃m = i / 31,32MP

  34. * (Pa ⊃a = i) • (Pm ⊃m = i) / 29,33Conj

  35. * a = i ∨ m = i / 24,34CD

  36. * ¬ (a = h) / 7Simp

  37. * ¬ (h = m) / 8Simp

  38. * * i = h / AIP

  39. * * ¬ (m = i) / 37,38Id

  40. * * a = i / 39,35DS

  41. * * i = a / 40Id

  42. * * ¬ (i = h) / 41,36Id

  43. * (i = h) • ¬ (i = h) / 38,42Contr

  44. * ¬ (i = h) / 38-43IP

  45. * (Ch • Rh • Ph) ⊃h = i / 25UI

  46. * ¬ (Ch • Rh • Ph) / 44,45MT

  47. * ¬ Ch ∨¬ Rh ∨ ¬ Ph / 46DeM

  48. * Ch • Rh / 7Simp

  49. * ¬ Ph / 48,47DS

  50. * (Ch • Rh • ¬ Ph) ⊃Oh / 3UI

  51. * Ch • Rh • ¬ Ph / 48,49Conj

  52. * Oh / 51,50MP

  53. * (y)[(Oa • Oy • Ra • Ry) ⊃a = y] / 10UI

  54. * (Oa • Oh • Ra • Rh) ⊃a = h / 53UI

  55. * ¬ (a = h) / 7Simp

  56. * ¬ (Oa • Oh • Ra • Rh) / 55,54MT

  57. * ¬ Oa ∨¬ Oh ∨¬ Ra ∨¬ Rh / 56DeM

  58. * Ra • Rh / 7Simp

  59. * ¬ Oa∨¬ Oh / 58,57DS

  60. * ¬ Oa / 52,59DS

  61. * (Ca • Ra • ¬ Pa) ⊃Oa / 3UI

  62. * ¬ (Ca • Ra • ¬ Pa) / 60,61MT

  63. * ¬ Ca ∨¬ Ra ∨Pa / 62DeM

  64. * Pa / 23,63DS

  65. * (Ca • Ra • Pa) ⊃a = i / 25UI

  66. * Ca • Ra • Pa / 28,64Conj

  67. * a = i / 66,65MP

  68. * ¬ (m = a) / 13Id

  69. * ¬ (m = i) / 67,68Id

  70. * (y)[(Oh • Oy • Rh • Ry) ⊃h = y] / 10UI

  71. * (Oh • Om • Rh • Rm) ⊃h = m / 70UI

  72. * ¬ (h = m) /7Simp

  73. * ¬ (Oh • Om • Rh • Rm) / 72,71MT

  74. * ¬ Oh ∨¬ Om ∨¬ Rh ∨¬ Rm / 73DeM

  75. * Rh • Rm / 7Simp

  76. * ¬ Oh ∨¬ Om / 75,74DS

  77. * (Ch • Rh • ¬ Ph) ⊃Oh / 3UI

  78. * (Cm • Rm • ¬ Pm) ⊃Om / 3UI

  79. * [(Ch • Rh • ¬ Ph) ⊃Oh] • [(Cm • Rm • ¬ Pm) ⊃Om] / 77,78Conj

  80. * ¬ (Ch • Rh • ¬ Ph) ∨¬ (Cm • Rm • ¬ Pm) / 76,79DD

  81. * ¬ Ch ∨¬ Rh ∨Ph ∨¬ Cm ∨¬ Rm ∨Pm / 80DeM

  82. * Ch • Cm • Rh • Rm / 7Simp

  83. * Ph ∨Pm / 82,81DS

  84. * Pm / 49,83DS

  85. * (Cm • Rm • Pm) ⊃m = i / 25UI

  86. * Cm • Rm • Pm / 31,84Conj

  87. * m = i / 86,85MP

  88. * m = i • ¬ (m = i) / 87,69Contr

  89. (∃x)(∃y)[Ox • Oy • Rx • Ry • ¬ (x = y)] / 9-88IP

1 comment:

  1. hi could you solve problem 7m in Unit 8 Virginia Klenk, 5th Edition?

    It is impossible.

    ReplyDelete