Try Indirect Proof. This helps to unpackage the first two premises. Then the trick is to use addition to set up propositions which will help break down the other two premises.
- G ⊃(H • I)
- J ⊃(H • K)
- [(L ⊃¬ G) • M] ⊃N
- (M ⊃N) ⊃(L • J)
- ∴ I ∨K
- * ¬ (I ∨K) / AIP
- * ¬ I • ¬ K / 6DeM
- * ¬ I / 7Simp
- * ¬ K / 7Simp
- * ¬ G ∨(H • I) / 1CE
- * (¬ G ∨H) • (¬ G ∨I) /10Dist
- * ¬ G ∨I / 11Simp
- * ¬ G / 8,12DS
- * ¬ J ∨(H • K) / 2CE
- * (¬ J ∨H) • (¬ J ∨K) / 14Dist
- * ¬ J ∨K / 15Simp
- * ¬ J / 9,16DS
- * ¬ G ∨¬ L /13Add
- * ¬ L ∨¬ G / 18Comm
- * (L ⊃¬ G) / 19CE
- * ¬ J ∨¬ L / 17Add
- * ¬ L ∨¬ J / 21Comm
- * ¬ (L • J) / 22DeM
- * ¬ (M ⊃N) / 4,23MT
- * ¬ (¬ M ∨N) / 24CE
- * M • ¬ N / 25DeM
- * M / 26Simp
- * ¬ N / 26Simp
- * ¬ [(L ⊃¬ G) • M] / 3,28MT
- * ¬ (L ⊃¬ G) ∨¬ M / 29DeM
- * ¬ (L ⊃¬ G) / 27,30DS
- * (L ⊃¬ G) • ¬ (L ⊃¬ G) / 20,31Conj
- ¬ ¬ (I ∨K) / 6-32IP
- I ∨K / 33DN
No comments:
Post a Comment