Saturday, 4 February 2012

Logic and Philosophy, A. Hausman, H. Kahane, P. Tidman, Wadsworth, 11th ed., 2010, 13-1(7)

Prove valid, as usual:
  1. (∃x)[Px • (y)(Py ⊃ y=x) • Qx]
  2. (∃x) ¬ ( ¬ Px ¬ Ex]
  3. ( ∃x)(Ex • Qx)
  4. (∃x) (¬ ¬ Px • ¬ ¬ Ex] ......... 2 DeM
  5. (∃x) (Px • Ex] ........ 4 DN
  6. Pa • (y)(Py ⊃ y=a) • Qa ......... 1 EI x/a
  7. Pm • Em ......... 5 EI x/m
  8. (y)(Py ⊃ y=a) ......... 6 Simp.
  9. Pm ⊃ m=a ......... 8 UI y/m
  10. Pm ......... 7 Simp.
  11. m=a ...... 9,10 MP
  12. Em ......... 7 Simp.
  13. Ea ......... 11,12 Id
  14. Qa ......... 6 Simp.
  15. Ea • Qa ......... 13,14 Conj.
  16. (∃x)(Ex • Qx) ......... 15 EG

Wednesday, 11 January 2012

Logic and Philosophy, A. Hausman, H. Kahane, P. Tidman, Wadsworth, 11th ed., 2010, 13-1(6)

Prove the validity:
  1. (∃x)(y){[ ¬ Fxy ⊃ x=y ] Gx}
  2. (x){ ¬ Gx ⊃(∃y)[ y x • Fyx]}
  3. * ¬ Gx ......... ACP
  4. * (y){[ ¬ Fay ⊃ a=y ] Ga} ......... 1 EI x/a
  5. * ¬ Fax ⊃ a=x Ga ......... 4 UI y/x
  6. * Ga ......... 5 Simp.
  7. * a ≠ x ......... 3,6 Id
  8. * ¬ Fax ⊃ a=x ......... 5 Simp.
  9. * Fax ......... 7,8 MT
  10. * a ≠ x • Fax ......... 7,9 Conj.
  11. * (∃y)( y ≠ x • Fyx) ......... 10 EG
  12. ¬ Gx ⊃(∃y)[ y x • Fyx] ......... 3-11 CP
  13. (x){ ¬ Gx ⊃(∃y)[ y x • Fyx]} ......... 12 UG