Thursday, 30 June 2011

The Logic Book, M. Bergmann, J. Moor, J. Nelson, McGraw Hill, 2004, 10.4E, 5(f), p. 557

We are asked to show that sentences in this pair are equivalent:
  1. (x)(y)[(Axy • Ayx) ⊃ Axx]
  2. (x)[(∃y)(Axy • Ayx) ⊃ Axx]
The proof:
  1. (x)(y)[(Axy • Ayx) ⊃ Axx]
  2. * (∃y)(Axy • Ayx) ......... ACP
  3. * Axm • Amx ......... 2 EI y/m
  4. * (y)[(Axy • Ayx) ⊃ Axx] ......... 1 UI x/x
  5. * (Axm • Amx) ⊃ Axx ......... 4 UI y/m
  6. * Axx ......... 3,5 MP
  7. (∃y)(Axy • Ayx) ⊃ Axx ......... 2-6 CP
  8. (x)[(∃y)(Axy • Ayx) ⊃ Axx] ......... 7 UG
and in reverse:
  1. (x)[(∃y)(Axy • Ayx) ⊃ Axx]
  2. * Axy • Ayx ......... ACP
  3. * (∃y)(Axy • Ayx) ......... 2 EG
  4. * (∃y)(Axy • Ayx) ⊃ Axx ......... 1 UI x/x
  5. * Axx ......... 3,4 MP
  6. (Axy • Ayx) ⊃ Axx ......... 2-5 CP
  7. (y)[(Axy • Ayx) ⊃Axx] ......... 6 UG
  8. (x)(y)[(Axy • Ayx) ⊃Axx] ......... 7 UG

No comments:

Post a Comment