Thursday, 3 March 2011

Symbolic Logic, Dale Jacquette, Wadsworth, 2001, Chpt. 8, IV(4), p. 434

The argument is:

Every honcho is both a honcho and a bigwig. Some nonbigwigs are movers and shakers. So, it follows immediately that some movers and shakers are nonhonchos.

The proof:
  1. (x)[Hx ⊃(Hx • Bx)]
  2. (∃x)(¬ Bx • Mx • Sx)
  3. ∴(∃x)(Mx • Sx • ¬ Hx)
  4. ¬ Bm • Mm • Sm ......... 2 EI x/m
  5. Hm ⊃(Hm • Bm) ......... 1 UI x/m
  6. ¬ Hm ∨(Hm • Bm) ......... 5 MI
  7. (¬ Hm ∨Hm ) • (¬ Hm ∨Bm) ......... 6 Dist.
  8. ¬ Hm ∨Bm ......... 7 Simp.
  9. ¬ Bm ......... 4 Simp.
  10. ¬ Hm ......... 9,8 DS
  11. Mm • Sm ......... 4 Simp.
  12. ¬ Hm • Mm • Sm ......... 10,11 Conj.
  13. Mm • Sm • ¬ Hm ......... 12 Comm.
  14. (∃x)(Mx • Sx • ¬ Hx) ......... 13 EG

No comments:

Post a Comment