The argument is:
Every honcho is both a honcho and a bigwig. Some nonbigwigs are movers and shakers. So, it follows immediately that some movers and shakers are nonhonchos.
The proof:
- (x)[Hx ⊃(Hx • Bx)]
- (∃x)(¬ Bx • Mx • Sx)
- ∴(∃x)(Mx • Sx • ¬ Hx)
- ¬ Bm • Mm • Sm ......... 2 EI x/m
- Hm ⊃(Hm • Bm) ......... 1 UI x/m
- ¬ Hm ∨(Hm • Bm) ......... 5 MI
- (¬ Hm ∨Hm ) • (¬ Hm ∨Bm) ......... 6 Dist.
- ¬ Hm ∨Bm ......... 7 Simp.
- ¬ Bm ......... 4 Simp.
- ¬ Hm ......... 9,8 DS
- Mm • Sm ......... 4 Simp.
- ¬ Hm • Mm • Sm ......... 10,11 Conj.
- Mm • Sm • ¬ Hm ......... 12 Comm.
- (∃x)(Mx • Sx • ¬ Hx) ......... 13 EG
No comments:
Post a Comment