Thursday, 4 November 2010

Symbolic Logic, Irving M. Copi, Prentice Hall, 1979, 5th edition, p. 150, problem 10

We are asked to prove the validity of the following argument, where Ax - x was an accompanist, Bx - x was a bagpiper, and Cx - x was in the cabin. The argument goes:
All accompanists were bagpipers. All bagpipers were in the cabin. At most two individuals were in the cabin. There were at least two accompanists. Therefore, there were exactly two bagpipers.
  1. (x)(Ax ⊃Bx)
  2. (x)(Bx ⊃ Cx)
  3. (x)(y)(z)[(Cx • Cy • Cz) ⊃(x = y ∨x = z ∨ y = z)]
  4. (∃x)(∃y)[Ax • Ay • ¬ (x = y)]
  5. ∴(∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]}
  6. * ¬ (∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]} ......... AIP
  7. * (x)(y){[Bx • By • ¬ (x = y)] ⊃(∃z)[Bz • ¬ (z = x) • ¬ (z = y)]} ......... 6CQ
  8. * (∃y)[Aa • Ay • ¬ (a = y)] ......... 4EI x/a
  9. * Aa • Am • ¬ (a = m) ......... 8EI y/m
  10. * Aa ⊃ Ba ......... 1UI x/a
  11. * Aa ......... 9Simp.
  12. * Ba ......... 11,10MP
  13. * Am ⊃ Bm ......... 1UI x/m
  14. * Am ......... 9Simp.
  15. * Bm ......... 14,13MP
  16. * ¬ (a = m) ......... 9Simp.
  17. * Ba • Bm • ¬ (a = m) ......... 12,15,16Conj.
  18. * (y){[Ba • By • ¬ (a = y)] ⊃(∃z)[Bz • ¬ (z = a) • ¬ (z = y)]} ......... 7UI x/a
  19. * [Ba • Bm • ¬ (a = m)] ⊃(∃z)[Bz • ¬ (z = a) • ¬ (z = m)] ......... 18UI y/m
  20. * (∃z)[Bz • ¬ (z = a) • ¬ (z = m)] ......... 17,19MP
  21. * Bh • ¬ (h = a) • ¬ (h = m) ......... 20EI z/h
  22. * Bh ⊃Ch ......... 2UI x/h
  23. * Bh ......... 21Simp.
  24. * Ch ......... 22,23MP
  25. * Ba ⊃Ca ......... 2UI x/a
  26. * Ca ......... 12,25MP
  27. * Bm ⊃Cm ......... 2UI x/m
  28. * Cm ......... 14,27MP
  29. * Ca • Cm • Ch ......... 26,24,28Conj.
  30. * (y)(z)[(Ca • Cy • Cz) ⊃(a = y ∨a = z ∨ y = z)] ......... 3UI x/a
  31. * (z)[(Ca • Cm • Cz) ⊃(a = m ∨a = z ∨ m = z)] ......... 30UI y/m
  32. * (Ca • Cm • Ch) ⊃(a = m ∨a = h ∨ m = h) ......... 31UI z/h
  33. * a = m ∨a = h ∨ m = h ......... 29,32MP
  34. * a = h ∨ m = h ......... 16,33DS
  35. * ¬ (h = a) ......... 21Simp.
  36. * m = h ......... 35,34DS
  37. * ¬ (h = m) ......... 21Simp.
  38. * h = m ......... 36Comm.
  39. * h = m • ¬ (h = m) ......... 37,38Conj.
  40. ¬ ¬ (∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]} ......... 6-39IP
  41. (∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]} ......... 40DN

No comments:

Post a Comment