We are asked to prove the validity of the following argument, where Ax - x was an accompanist, Bx - x was a bagpiper, and Cx - x was in the cabin. The argument goes:
All accompanists were bagpipers. All bagpipers were in the cabin. At most two individuals were in the cabin. There were at least two accompanists. Therefore, there were exactly two bagpipers.
- (x)(Ax ⊃Bx)
- (x)(Bx ⊃ Cx)
- (x)(y)(z)[(Cx • Cy • Cz) ⊃(x = y ∨x = z ∨ y = z)]
- (∃x)(∃y)[Ax • Ay • ¬ (x = y)]
- ∴(∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]}
- * ¬ (∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]} ......... AIP
- * (x)(y){[Bx • By • ¬ (x = y)] ⊃(∃z)[Bz • ¬ (z = x) • ¬ (z = y)]} ......... 6CQ
- * (∃y)[Aa • Ay • ¬ (a = y)] ......... 4EI x/a
- * Aa • Am • ¬ (a = m) ......... 8EI y/m
- * Aa ⊃ Ba ......... 1UI x/a
- * Aa ......... 9Simp.
- * Ba ......... 11,10MP
- * Am ⊃ Bm ......... 1UI x/m
- * Am ......... 9Simp.
- * Bm ......... 14,13MP
- * ¬ (a = m) ......... 9Simp.
- * Ba • Bm • ¬ (a = m) ......... 12,15,16Conj.
- * (y){[Ba • By • ¬ (a = y)] ⊃(∃z)[Bz • ¬ (z = a) • ¬ (z = y)]} ......... 7UI x/a
- * [Ba • Bm • ¬ (a = m)] ⊃(∃z)[Bz • ¬ (z = a) • ¬ (z = m)] ......... 18UI y/m
- * (∃z)[Bz • ¬ (z = a) • ¬ (z = m)] ......... 17,19MP
- * Bh • ¬ (h = a) • ¬ (h = m) ......... 20EI z/h
- * Bh ⊃Ch ......... 2UI x/h
- * Bh ......... 21Simp.
- * Ch ......... 22,23MP
- * Ba ⊃Ca ......... 2UI x/a
- * Ca ......... 12,25MP
- * Bm ⊃Cm ......... 2UI x/m
- * Cm ......... 14,27MP
- * Ca • Cm • Ch ......... 26,24,28Conj.
- * (y)(z)[(Ca • Cy • Cz) ⊃(a = y ∨a = z ∨ y = z)] ......... 3UI x/a
- * (z)[(Ca • Cm • Cz) ⊃(a = m ∨a = z ∨ m = z)] ......... 30UI y/m
- * (Ca • Cm • Ch) ⊃(a = m ∨a = h ∨ m = h) ......... 31UI z/h
- * a = m ∨a = h ∨ m = h ......... 29,32MP
- * a = h ∨ m = h ......... 16,33DS
- * ¬ (h = a) ......... 21Simp.
- * m = h ......... 35,34DS
- * ¬ (h = m) ......... 21Simp.
- * h = m ......... 36Comm.
- * h = m • ¬ (h = m) ......... 37,38Conj.
- ¬ ¬ (∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]} ......... 6-39IP
- (∃x)(∃y){Bx • By • ¬ (x = y) • (z)[Bz ⊃(z = x ∨z = y)]} ......... 40DN
No comments:
Post a Comment