Friday, 22 October 2010

Deduction, Daniel Bonevac, Blackwell Publishing, 2003, 8.3 problem 16, p. 238

We can say in symbolic terms - according to the instructions to this problem - that there is one and only one God: (∃x)(y)(y = x ≡ Gy). We can further show that the following is a consequence of this formula: (∃x)(Gx • ¬ Fx) ≡ (x)(Gx ⊃¬ Fx). Since the conclusion is an equivalence, we need to prove it for two cases. A conditional proof is required in each case (twice in the first case). The hardest part, as usual, is being able to spot that we have to instantiate the same proposition more than once.


  1. (∃x)(y)(y = x ≡ Gy)
  2. ∴(∃x)(Gx • ¬ Fx) ≡ (x)(Gx ⊃¬ Fx)
  3. CASE 1: (∃x)(Gx • ¬ Fx) ⊃ (x)(Gx ⊃¬ Fx)
  4. * (∃x)(Gx • ¬ Fx) ......... ACP
  5. * Ga • ¬ Fa ......... 4EI x/a
  6. * (y)(y = m ≡ Gy) ......... 1EI x/m
  7. * * Gx ......... ACP
  8. * * x = m ≡ Gx ......... 6UI y/x
  9. * * (x = m ⊃ Gx) • (Gx ⊃x = m) ......... 8BE
  10. * * a = m ≡ Ga ......... 6UI y/a
  11. * * (a = m ⊃ Ga) • (Ga ⊃a = m) ......... 10BE
  12. * * Gx ⊃x = m ......... 9Simp.
  13. * * x = m ......... 7,12MP
  14. * * Ga ⊃a = m ......... 11Simp.
  15. * * Ga ......... 5Simp.
  16. * * a = m ......... 15,14MP
  17. * * m = a ......... 16Comm.
  18. * * x = a ......... 13,17Id
  19. * * ¬ Fa ......... 5Simp.
  20. * * ¬ Fx ......... 18,19Id
  21. * Gx ⊃¬ Fx ......... 7-20CP
  22. * (x)(Gx ⊃¬ Fx) ......... 21UG
  23. (∃x)(Gx • ¬ Fx) ⊃ (x)(Gx ⊃¬ Fx) ......... 4-22CP
  24. CASE 2: (x)(Gx ⊃¬ Fx) ⊃(∃x)(Gx • ¬ Fx)
  25. * (x)(Gx ⊃¬ Fx) ......... ACP
  26. * (y)(y = a ≡ Gy) ......... 1EI x/a
  27. * a = a ≡ Ga ......... 26UI y/a
  28. * (a = a ⊃ Ga) • (Ga ⊃a = a) ......... 27BE
  29. * a = a ......... Id
  30. * a = a ⊃ Ga ......... 28Simp.
  31. * Ga ......... 29,30MP
  32. * Ga ⊃¬ Fa ......... 25UI x/a
  33. * ¬ Fa ......... 31,32MP
  34. * Ga • ¬ Fa ......... 31,33Conj.
  35. * (∃x)(Gx • ¬ Fx) ......... 34EG
  36. (x)(Gx ⊃¬ Fx) ⊃(∃x)(Gx • ¬ Fx) ......... 25-35CP
  37. [(∃x)(Gx • ¬ Fx) ⊃ (x)(Gx ⊃¬ Fx)] • [(x)(Gx ⊃¬ Fx) ⊃(∃x)(Gx • ¬ Fx)] ......... 23,36Conj.
  38. (∃x)(Gx • ¬ Fx) ≡ (x)(Gx ⊃¬ Fx) ......... 37BE

No comments:

Post a Comment