We can say in symbolic terms - according to the instructions to this problem - that there is one and only one God: (∃x)(y)(y = x ≡ Gy). We can further show that the following is a consequence of this formula: (∃x)(Gx • ¬ Fx) ≡ (x)(Gx ⊃¬ Fx). Since the conclusion is an equivalence, we need to prove it for two cases. A conditional proof is required in each case (twice in the first case). The hardest part, as usual, is being able to spot that we have to instantiate the same proposition more than once.
- (∃x)(y)(y = x ≡ Gy)
- ∴(∃x)(Gx • ¬ Fx) ≡ (x)(Gx ⊃¬ Fx)
- CASE 1: (∃x)(Gx • ¬ Fx) ⊃ (x)(Gx ⊃¬ Fx)
- * (∃x)(Gx • ¬ Fx) ......... ACP
- * Ga • ¬ Fa ......... 4EI x/a
- * (y)(y = m ≡ Gy) ......... 1EI x/m
- * * Gx ......... ACP
- * * x = m ≡ Gx ......... 6UI y/x
- * * (x = m ⊃ Gx) • (Gx ⊃x = m) ......... 8BE
- * * a = m ≡ Ga ......... 6UI y/a
- * * (a = m ⊃ Ga) • (Ga ⊃a = m) ......... 10BE
- * * Gx ⊃x = m ......... 9Simp.
- * * x = m ......... 7,12MP
- * * Ga ⊃a = m ......... 11Simp.
- * * Ga ......... 5Simp.
- * * a = m ......... 15,14MP
- * * m = a ......... 16Comm.
- * * x = a ......... 13,17Id
- * * ¬ Fa ......... 5Simp.
- * * ¬ Fx ......... 18,19Id
- * Gx ⊃¬ Fx ......... 7-20CP
- * (x)(Gx ⊃¬ Fx) ......... 21UG
- (∃x)(Gx • ¬ Fx) ⊃ (x)(Gx ⊃¬ Fx) ......... 4-22CP
- CASE 2: (x)(Gx ⊃¬ Fx) ⊃(∃x)(Gx • ¬ Fx)
- * (x)(Gx ⊃¬ Fx) ......... ACP
- * (y)(y = a ≡ Gy) ......... 1EI x/a
- * a = a ≡ Ga ......... 26UI y/a
- * (a = a ⊃ Ga) • (Ga ⊃a = a) ......... 27BE
- * a = a ......... Id
- * a = a ⊃ Ga ......... 28Simp.
- * Ga ......... 29,30MP
- * Ga ⊃¬ Fa ......... 25UI x/a
- * ¬ Fa ......... 31,32MP
- * Ga • ¬ Fa ......... 31,33Conj.
- * (∃x)(Gx • ¬ Fx) ......... 34EG
- (x)(Gx ⊃¬ Fx) ⊃(∃x)(Gx • ¬ Fx) ......... 25-35CP
- [(∃x)(Gx • ¬ Fx) ⊃ (x)(Gx ⊃¬ Fx)] • [(x)(Gx ⊃¬ Fx) ⊃(∃x)(Gx • ¬ Fx)] ......... 23,36Conj.
- (∃x)(Gx • ¬ Fx) ≡ (x)(Gx ⊃¬ Fx) ......... 37BE
No comments:
Post a Comment