Friday, 9 April 2010

Deduction, Daniel Bonevac, Blackwell Publishing, 2nd edition, 2003, Ex. 8.3, problem 13

As elsewhere in this set of problems, the task is to show that the formula (∃x)(y)(x = y ≡ Gy) implies the conclusion of the argument reproduced below. Since the conclusion itself is a biconditional, we show first that the formula on the left implies the formula on the right, and then the reverse. We are free to use the same constants from line 18 on as in the first assumption because that assumption has been discharged on line 17.
  1. (∃x)(y)(x = y ≡ Gy)
  2. ∴(∃x)(Gx • Fxx) ≡ (∃x)(∃y)(Gx • Gy • Fxy)
  3. * (∃x)(Gx • Fxx) / ACP
  4. * Ga • Faa / 3EI x/a
  5. * (y)(h = y ≡ Gy) / 1EI x/h
  6. * h = a ≡ Ga / 5UI y/a
  7. * (h = a ⊃ Ga) • (Ga ⊃h = a) / 6BE
  8. * Ga / 4Simp.
  9. * Ga ⊃h = a / 8Simp.
  10. * h = a / 8,9MP
  11. * Faa / 4Simp.
  12. * Fah / 10,11Id
  13. * Gh / 10,8Id
  14. * Ga • Gh •Fah / 9,12,13Conj.
  15. * (∃y)(Ga • Gy • Fay) / 14EG
  16. * (∃x)(∃y)(Gx • Gy • Fxy) / 15EG
  17. (∃x)(Gx • Fxx) ⊃(∃x)(∃y)(Gx • Gy • Fxy) / 3-16CP
  18. * (∃x)(∃y)(Gx • Gy • Fxy) / ACP
  19. * (∃y)(Ga • Gy • Fay) / 18EI x/a
  20. * Ga • Gm • Fam / 19EI y/m
  21. * (y)(h = y ≡ Gy) / 1EI x/h
  22. * h = a ≡ Ga / 21UI y/a
  23. * (h = a ⊃ Ga) • (Ga ⊃h = a) / 22BE
  24. * Ga ⊃h = a / 23Simp.
  25. * Ga / 20Simp.
  26. * h = a / 24,25MP
  27. * h = m ≡ Gm / 21UI y/m
  28. * (h = m ⊃ Gm) • (Gm ⊃h = m) / 27BE
  29. * Gm / 20Simp.
  30. * Gm ⊃h = m / 28Simp.
  31. * h = m / 29,30MP
  32. * m = h / 31Id
  33. * m = a / 32,26Id
  34. * Fam / 20Simp.
  35. * Faa / 33,34Id
  36. * Ga • Faa / 25,35Conj.
  37. * (∃x)(Gx • Fxx) / 36EG
  38. (∃x)(∃y)(Gx • Gy • Fxy) ⊃ (∃x)(Gx • Fxx) / 18-37CP
  39. [(∃x)(Gx • Fxx) ⊃(∃x)(∃y)(Gx • Gy • Fxy)] • [(∃x)(∃y)(Gx • Gy • Fxy) ⊃ (∃x)(Gx • Fxx)] / 17,38Conj.
  40. (∃x)(Gx • Fxx) ≡ (∃x)(∃y)(Gx • Gy • Fxy) / 39BE

No comments:

Post a Comment