As elsewhere in this set of problems, the task is to show that the formula (∃x)(y)(x = y ≡ Gy) implies the conclusion of the argument reproduced below. Since the conclusion itself is a biconditional, we show first that the formula on the left implies the formula on the right, and then the reverse. We are free to use the same constants from line 18 on as in the first assumption because that assumption has been discharged on line 17.
- (∃x)(y)(x = y ≡ Gy)
- ∴(∃x)(Gx • Fxx) ≡ (∃x)(∃y)(Gx • Gy • Fxy)
- * (∃x)(Gx • Fxx) / ACP
- * Ga • Faa / 3EI x/a
- * (y)(h = y ≡ Gy) / 1EI x/h
- * h = a ≡ Ga / 5UI y/a
- * (h = a ⊃ Ga) • (Ga ⊃h = a) / 6BE
- * Ga / 4Simp.
- * Ga ⊃h = a / 8Simp.
- * h = a / 8,9MP
- * Faa / 4Simp.
- * Fah / 10,11Id
- * Gh / 10,8Id
- * Ga • Gh •Fah / 9,12,13Conj.
- * (∃y)(Ga • Gy • Fay) / 14EG
- * (∃x)(∃y)(Gx • Gy • Fxy) / 15EG
- (∃x)(Gx • Fxx) ⊃(∃x)(∃y)(Gx • Gy • Fxy) / 3-16CP
- * (∃x)(∃y)(Gx • Gy • Fxy) / ACP
- * (∃y)(Ga • Gy • Fay) / 18EI x/a
- * Ga • Gm • Fam / 19EI y/m
- * (y)(h = y ≡ Gy) / 1EI x/h
- * h = a ≡ Ga / 21UI y/a
- * (h = a ⊃ Ga) • (Ga ⊃h = a) / 22BE
- * Ga ⊃h = a / 23Simp.
- * Ga / 20Simp.
- * h = a / 24,25MP
- * h = m ≡ Gm / 21UI y/m
- * (h = m ⊃ Gm) • (Gm ⊃h = m) / 27BE
- * Gm / 20Simp.
- * Gm ⊃h = m / 28Simp.
- * h = m / 29,30MP
- * m = h / 31Id
- * m = a / 32,26Id
- * Fam / 20Simp.
- * Faa / 33,34Id
- * Ga • Faa / 25,35Conj.
- * (∃x)(Gx • Fxx) / 36EG
- (∃x)(∃y)(Gx • Gy • Fxy) ⊃ (∃x)(Gx • Fxx) / 18-37CP
- [(∃x)(Gx • Fxx) ⊃(∃x)(∃y)(Gx • Gy • Fxy)] • [(∃x)(∃y)(Gx • Gy • Fxy) ⊃ (∃x)(Gx • Fxx)] / 17,38Conj.
- (∃x)(Gx • Fxx) ≡ (∃x)(∃y)(Gx • Gy • Fxy) / 39BE
No comments:
Post a Comment