Saturday, 5 December 2009

Propositional Logic, Howard Pospesel, Prentice Hall, 2000, 3rd edition, Chapter 9, ex. 22

The task is to prove that the biconditional is associative. The hardest thing is to think of the correct assumptions to get us started. Eventually, two assumptions for conditional proof and two for indirect proof are used before we can begin to unpick line 4.
  1. C ≡ (D ≡ E)
  2. ∴(C ≡ D) ≡ E
  3. [C ⊃(D ≡ E)] [(D ≡ E) ⊃C] / 2BE
  4. {C ⊃[(D ⊃E) • (E⊃D)]} • {[(D⊃E) • (E⊃D)] ⊃C} / 3BE
  5. * C ⊃D / ACP
  6. * * D ⊃C / ACP
  7. * * * ¬ E / AIP
  8. * * * * ¬ D / AIP
  9. * * * * ¬ C / 8,5MT
  10. * * * * [(D⊃E) • (E⊃D)] ⊃C / 4Simp.
  11. * * * * ¬ [(D⊃E) • (E⊃D)] / 9,10MT
  12. * * * * [ ¬ (D⊃E) ∨¬ (E⊃D)] / 11DeM
  13. * * * * ¬ D ∨E / 8Add
  14. * * * * ¬ (D • ¬ E) / 13DeM
  15. * * * * (D • ¬ E) ∨(E • ¬ D) / 12DeM
  16. * * * * E • ¬ D / 14,15DS
  17. * * * * E / 16Simp.
  18. * * * * E • ¬ E / 7,17Conj.
  19. * * * ¬ ¬ D / 8-18IP
  20. * * * D / 19DN
  21. * * * C / 6,20MP
  22. * * * C ⊃[(D ⊃E) • (E⊃D)] / 4Simp.
  23. * * * (D ⊃E) • (E⊃D) / 21,22MP
  24. * * * D ⊃E / 23Simp.
  25. * * * ¬ D / 7,24MT
  26. * * * ¬ D • D / 20,25Conj.
  27. * * ¬ ¬ E / 7,26IP
  28. * * E / 27DN
  29. * (D ⊃C) ⊃E / 6-28CP
  30. (C ⊃D) ⊃[(D ⊃C) ⊃E] / 5-29CP
  31. [(C ⊃D) • (D ⊃C)] ⊃E / 30Exp
  32. * E / ACP
  33. * * C / ACP
  34. * * C ⊃[(D ⊃E) • (E⊃D)] /4Simp.
  35. * * (D ⊃E) • (E⊃D) / 33,34MP
  36. * * E⊃D / 35Simp.
  37. * * D / 32,36MP
  38. * C ⊃D / 33-37CP
  39. * * D / ACP
  40. * * D ∨¬ E / 37Add
  41. * * E ⊃D / 40CE or MI
  42. * * E ∨¬ D / 32Add
  43. * * D ⊃E / 42CE or MI
  44. * * (D ⊃E) • (E ⊃D) / 41,43Conj.
  45. * * [(D⊃E) • (E⊃D)] ⊃C / 4Simp.
  46. * * C / 44,45MP
  47. * D ⊃C / 39-46CP
  48. * (C ⊃D) • (D ⊃C) /38,47Conj.
  49. E ⊃[(C ⊃D) • (D ⊃C)] / 32-48CP
  50. {[(C ⊃D) • (D ⊃C)] ⊃E} • {E ⊃[(C ⊃D) • (D ⊃C)]} / 31,49Conj.
  51. [(C ≡ D) ⊃E] • [E⊃(C ≡ D)] / 50BE
  52. (C ≡ D) ≡ E / 51BE

No comments:

Post a Comment