- C ≡ (D ≡ E)
- ∴(C ≡ D) ≡ E
- [C ⊃(D ≡ E)] [(D ≡ E) ⊃C] / 2BE
- {C ⊃[(D ⊃E) • (E⊃D)]} • {[(D⊃E) • (E⊃D)] ⊃C} / 3BE
- * C ⊃D / ACP
- * * D ⊃C / ACP
- * * * ¬ E / AIP
- * * * * ¬ D / AIP
- * * * * ¬ C / 8,5MT
- * * * * [(D⊃E) • (E⊃D)] ⊃C / 4Simp.
- * * * * ¬ [(D⊃E) • (E⊃D)] / 9,10MT
- * * * * [ ¬ (D⊃E) ∨¬ (E⊃D)] / 11DeM
- * * * * ¬ D ∨E / 8Add
- * * * * ¬ (D • ¬ E) / 13DeM
- * * * * (D • ¬ E) ∨(E • ¬ D) / 12DeM
- * * * * E • ¬ D / 14,15DS
- * * * * E / 16Simp.
- * * * * E • ¬ E / 7,17Conj.
- * * * ¬ ¬ D / 8-18IP
- * * * D / 19DN
- * * * C / 6,20MP
- * * * C ⊃[(D ⊃E) • (E⊃D)] / 4Simp.
- * * * (D ⊃E) • (E⊃D) / 21,22MP
- * * * D ⊃E / 23Simp.
- * * * ¬ D / 7,24MT
- * * * ¬ D • D / 20,25Conj.
- * * ¬ ¬ E / 7,26IP
- * * E / 27DN
- * (D ⊃C) ⊃E / 6-28CP
- (C ⊃D) ⊃[(D ⊃C) ⊃E] / 5-29CP
- [(C ⊃D) • (D ⊃C)] ⊃E / 30Exp
- * E / ACP
- * * C / ACP
- * * C ⊃[(D ⊃E) • (E⊃D)] /4Simp.
- * * (D ⊃E) • (E⊃D) / 33,34MP
- * * E⊃D / 35Simp.
- * * D / 32,36MP
- * C ⊃D / 33-37CP
- * * D / ACP
- * * D ∨¬ E / 37Add
- * * E ⊃D / 40CE or MI
- * * E ∨¬ D / 32Add
- * * D ⊃E / 42CE or MI
- * * (D ⊃E) • (E ⊃D) / 41,43Conj.
- * * [(D⊃E) • (E⊃D)] ⊃C / 4Simp.
- * * C / 44,45MP
- * D ⊃C / 39-46CP
- * (C ⊃D) • (D ⊃C) /38,47Conj.
- E ⊃[(C ⊃D) • (D ⊃C)] / 32-48CP
- {[(C ⊃D) • (D ⊃C)] ⊃E} • {E ⊃[(C ⊃D) • (D ⊃C)]} / 31,49Conj.
- [(C ≡ D) ⊃E] • [E⊃(C ≡ D)] / 50BE
- (C ≡ D) ≡ E / 51BE
Saturday, 5 December 2009
Propositional Logic, Howard Pospesel, Prentice Hall, 2000, 3rd edition, Chapter 9, ex. 22
The task is to prove that the biconditional is associative. The hardest thing is to think of the correct assumptions to get us started. Eventually, two assumptions for conditional proof and two for indirect proof are used before we can begin to unpick line 4.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment