Thursday, 22 December 2011

Logic and Philosophy, A. Hausman, H. Kahane, P. Tidman, Wadsworth, 11th ed., 2010, 13-1(3)

Prove that this argument is valid:
  1. Hc ⊃ Kc
  2. Md ⊃ Nd
  3. Hc • Md
  4. c = d
  5. ∴ Kd • Nc
  6. Hc ......... 3 Simp.
  7. Kc ......... 6,1 MP
  8. Kd ......... 4,7 Id
  9. Md ......... 3 Simp.
  10. Nd ......... 9,2 MP
  11. Nc ......... 10,4 Id
  12. Kd • Nc ......... 8,11 Conj.

Wednesday, 14 December 2011

Logic and Philosophy, A. Hausman, H. Kahane, P. Tidman, Wadsworth, 11th ed., 2010, 13-1(2)

Prove valid:
  1. (x)(Px ⊃ Qx)
  2. (x)(Qx ⊃ Rx)
  3. Pa ¬ Rb
  4. a ≠ b
  5. Pa ⊃ Qa ......... 1 UI x/a
  6. Pa ......... 3 Simp.
  7. Qa ......... 5,6 MP
  8. Qa ⊃ Ra ......... 2 UI x/a
  9. Ra ......... 7,8 MP
  10. ¬ Rb ......... 3 Simp.
  11. a ≠ b ......... 9,10 Id