- (x)(Ax ⊃Bx) ≡ ¬ (∃x)(Ax • ¬ Bx)
- ¬ (∃x)(Ex • ¬ Cx)
- ¬ (∃x)Ex
- ∴(x)[Ex ⊃(Ax • Bx • Cx)]
- * Ex ......... ACP
- * (x) ¬ Ex ......... 3 QC
- * ¬ Ex ......... 6 UI
- * ¬ Ex ∨(Ax • Bx • Cx) ......... 7 Add.
- * Ax • Bx • Cx ......... 8,5 DS
- Ex ⊃(Ax • Bx • Cx) ......... 5-9 CP
- (x)[Ex ⊃(Ax • Bx • Cx)] ......... 10 UG
Wednesday, 27 April 2011
Predicate Logic, Howard Pospesel, Prentice Hall, 2003, Chpt. 14, problem 25, p. 213
Thursday, 21 April 2011
Symbolic Logic, D. Jacquette, Wadsworth, 2001, Chpt. 8, IV(13), p.435
- (x)(Txl ⊃Hx)
- ∴ (x)(¬ Hx ⊃¬ Txl) • (x)(¬ Txl ∨Hx)
- (x)(¬ Hx ⊃¬ Txl) ......... 1 Contrap.
- (x)(¬ Txl ∨Hx) ......... 1 MI
- (x)(¬ Hx ⊃¬ Txl) • (x)(¬ Txl ∨Hx) ......... 3,4 Conj.
Thursday, 14 April 2011
The Logic Book, M. Bergmann, J. Moor, J. Nelson, McGraw Hill, 2004, 10.6E, 4(b), p. 572
- (∃x)(Ix • Khx)
- j = h
- Dj
- ∴(∃x)[Dx • (∃y)(Iy • Kxy)]
- Im • Khm ......... 1 EI x/m
- Khm ......... 5 Simp.
- Kjm ......... 3,6 Id
- Im ......... 5 Simp.
- Im • Kjm ......... 7,8 Conj.
- (∃y)(Iy • Kjy) ......... 9 EG
- Dj • (∃y)(Iy • Kjy) ......... 3,10 Conj.
- (∃x)[Dx • (∃y)(Iy • Kxy)] ......... 11 EG
Thursday, 7 April 2011
The 'undisciplined man' argument
In Plato’s Gorgias, Socrates expounds on the virtues of temperance, discipline and order to Callicles. At one point, the argument proceeds along these lines:
- An undisciplined man is not a fellow of any other man.
- If a man is not a fellow of any other, then he is not their friend either.
- If a man is not a friend of any other man, then he is not a friend of God.
- Therefore, an undisciplined man is neither a friend of any other man nor a friend of God.
- (x)(y){[Ux • ¬ (x = y)] ⊃¬ Exy}
- (x)(y){[¬ (x = y) • ¬ Exy] ⊃¬ Rxy}
- (x){(y)[¬ (x = y) ⊃¬ Rxy] ⊃¬ Rxg}
- ∴ (x){Ux ⊃ ¬ {(∃y)[ ¬ (x = y) • Rxy] ∨ Rxg}}
The Logic Book, M. Bergmann, J. Moor, J. Nelson, McGraw Hill, 2004, 10.6E, 3(d), p. 572
- * x = y • y = z ......... ACP
- * x = y ......... 1 Simp.
- * y = z ......... 1 Simp.
- * x = z ......... 2,3 Id
- (x = y • y = z)⊃ x = z ......... 1-4 CP
- (z)[(x = y • y = z)⊃ x = z] ......... 5 UG
- (y)(z)[(x = y • y = z)⊃ x = z] ......... 6 UG
- (x)(y)(z)[(x = y • y = z)⊃ x = z] ......... 7 UG